Processing math: 100%
\ie\cf
\newcommand{\eqdef}{\mathbin{\stackrel{\rm def}{=}}}
  \newcommand{\R} % real numbers
  \newcommand{\N}} % natural numbers
  \newcommand{\Z} % integers
  \newcommand{\F} % a field
  \newcommand{\Q} % the rationals
  \newcommand{\C}{\mathbb{C}} % the complexes
  \newcommand{\poly}}
  \newcommand{\polylog}}
  \newcommand{\loglog}}}
  \newcommand{\zo}{\{0,1\}}
  \newcommand{\suchthat}
  \newcommand{\pr}[1]{\Pr\left[#1\right]}
  \newcommand{\deffont}{\em}
  \newcommand{\getsr}{\mathbin{\stackrel{\mbox{\tiny R}}{\gets}}}
  \newcommand{\Exp}{\mathop{\mathrm E}\displaylimits} % expectation
  \newcommand{\Var}{\mathop{\mathrm Var}\displaylimits} % variance
  \newcommand{\xor}{\oplus}
  \newcommand{\GF}{\mathrm{GF}}
  \newcommand{\eps}{\varepsilon}
  \notag
\no
Back to TGINF

High-dimensional Expanders

Speaker: Santhoshini
Title: High-dimensional Expanders
Date: 28 Oct 2019 5:30pm-7:00pm
Location: Maxwell-Dworkin 123
Food: Indian (with multiple vegetarian choices)

Abstract: In this talk, I will introduce the notion of high dimensional expanders (expanding hypergraphs), discuss their properties and briefly discuss their applications in theoretical computer science. In the end, I will also briefly discuss the brilliant result of Kauffman and Oppenheim which shows that local expansion in hypergraphs implies global expansion.