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An ironic quote, hope this is not the case!

Before I came here I was
confused about this subject.
Having listened to your lecture I
am still confused, but on a
higher level.

Enrico Fermi, 1938 Physics
Nobel Prize
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Preliminaries

Notation

This is a definition

Here I define something

This is a theorem

Something is gnihtemoS backwards

Proof

This is a proof

A remark an observation or an example

for example, I observe or remark that this is an observation
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Preliminaries

Brief Introduction

In short:

Simulated Annealing (SA) is a technique used to solve complex non
linear problems

first application to the Travelling Salesman problem is attributed to
Kirkpatric et Al. [6]

It is a metaheuristic method using Statistical Mechanics concepts

Clever cross implementation of many subjects altogether

perfect example of inspiration from natural phenomena
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Preliminaries

Lecture Contents

Recap the framework of Statistical Mechanics

Present and analyze the Traveling Salesman Problem

Propose a setting that relaxes its complexity

Derive a Simulated Annealing algorithm that attempts to respect
those requirements
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Preliminaries

Link to course Lectures

Lecture II.a: Statistical Mechanics:

Microstates ω

many, probabilistically distributed on Ω

Macrostates X (ω)

properties of microstates common to many ω

X : Ω 7→ R

The problems

We can measure efficiently a macrostate, but do not identify the
microstate
We can observe one realization of ω across time, not many realizations
ω1, . . . , ωn
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Preliminaries

Thermodynamics Example

Microstate

Configurations (positions in R3) of particles with a non measurable energy

Macrostate

Temperature as a result of the geometrical configuration

Space of possible configurations, easy

If they are k , all distinct, to be placed in an (n × n) ∈ R2 grid, and we do
not account for symmetry, we have:(

n2

k

)
arrangements.
Not easy at this Stack Question. Anyway Big!
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Preliminaries

Not available vs available

Ensemble Average

E[X (ω)] :=

∫
X

x(ω)f (x(ω))dx(ω)

integral over Ω

Time Average

E[Xt ] :=
1

tmax

tmax∑
k=1

xk(ω)

sum for a single realization ω
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Preliminaries

Ergodicity

Under appropriate assumptions:

=⇒ E[Xt ]
a.s.→ E[X (ω)]

We could then sample iteratively and almost surely get to the mean
of the distribution (actually any bounded function, more details later).

We will see an energy fashioned application of this including
Boltzmann distribution:

P(
Energyi

T
= ui ) =

eui

Z
: Z =

∑
i

eui

Z encodes all possible microstates! It is big indeed.
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Preliminaries

Z Notable elements

Z depends on T

Z normalizes the energy configuration to a probability

Boltzmann distribution allows for a link between configurations and
properties.

It denotes a phase space as we saw in class
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Intro to the application
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Intro to the application

A difficult problem

Travelling Salesman Problem (TSP)

We are given a set of N cities, and a matrix D = {dij}j=1,...,N
i=1,...,N ∈ RN × RN

storing symmetric distances between each of the cities. The well known
Travelling Salesman Problema resorts to finding a minimum length cycle
of the cities.

aIn terms of optimization

Why is it difficult? We will formalize it and give a degree of complexity.

Minimization Problem Statement

If the total distance is E (r) for a route r then we wish to find:

rmin = argmin
R
{E (r)}
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Complexity Assessment

Solver A

Algorithm 1 Enumeration (not really) Algorithm

1: rmin ← None
2: Emin ←∞
3: for r ∈ R do
4: if E (r) < Emin then
5: rmin ← r
6: Emin ← E (r)
7: end if
8: end for
9: return rmin
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Complexity Assessment

Enumeration Attempt

An Enumeration attempt from FourmiLab.ch (Autodesk creator)[6]

Assume we have at disposal a computer that does 2.59 · 109 operations
per second (just to simplify things). Let N = 31 cities, then:

(N − 1)! =
N−1∏
i=1

(N − i) = 30! ≈ 2.65 · 1032

Assuming that the distance is calculated in negligible time we would need
a total time of

30!

2.65 · 109
sec = 1023sec ≈ 3 · 1016 years ≈ 2× 106 stories of the universea

aAssuming the universe is about 13.8 Billion years old, first google suggestion
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Complexity Assessment

Formalisms

NP-hard class of problems

NP-hard := {H : ∀L ∈ NP∃efficient reduction {Li} → H} (3.1)

Difficult to solve, difficult to check for a candidate solution with a
deterministic Turing Machine

TSP Hardness

TSP is NP-hard

Proof Sketch

TSP is combinatorially exploding, searching the space is inefficient with a
deterministic Turing Machine. Also, given a claim that an instance is a
solution, it is not efficient to check it in polynomial time.
Precisely: reduction of a Hamiltonial Cycle Problem ∈ NP-Complete.
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Complexity Assessment

Solution B

Algorithm 2 Greedy Algorithm O(N2log(N))

1: arr ← sort(cities)
2: edges ← [ ]
3: while len(edges) ! = N do
4: Select minimum distance tuple (i , j) ∈ arr
5: if [check no subcycles if add (i , j) to edges] then
6: if [check degrees <= 2 if add (i , j) to edges] then
7: edges.append((i , j))
8: end if
9: end if

10: end while
11: return edges
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Complexity Assessment

Heuristics result

Big-Theta bound

Given a function g(·)

Θ[g(N)] := {f (N) : ∃c1, c2 ∈ R+ N0 ∈ N+ :

0 ≤ c1g(N) ≤ f (N) ≤ c2g(N) ∀N > N0}

Broadly speaking, g(·) bounds a set of functions f (·) after some point.

Approximation ratio of an Algorithm

Ratio cost of Algorithm solution & exact solution
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Complexity Assessment

Heuristics are not reliable

approximation ratio of Solution B is Θ[log(N)] [1]

on average in the 15-20% more than best known method for exact
solution[3]

Held-Karp Algorithm

P = NP?

Not at all, heuristics are not general exact solutions. Solution B is just
satisficing.
Nothing is ever guaranteed
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Algorithmic Requirements

Framework

Random sequential samples

Following what we observed in class about ergodicity, we could envision a
system that:

explores options efficiently

does not get stuck at satisficing options (so called local minimas)

resembles the actual distribution wrt E (·)

Notation

Routes will be called states in some cases. We will refer to r with the pedix
i or j to follow a canonical notation when we deal with multiple states.
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Algorithmic Requirements

Setting

Routes Space R

R := {r valid}

feature ui

ui = f (ri )∀i ∈ R for some f (·)

Here f can be anything (it is the macrostate measurement!).

probability distribution ρ

The feature, and thus ri have a distribution ri ∼ ρ(·)

Transition Matrix Q(t)

Q(t) := {pji (t) := P[Xt = j |Xt−1 = i , t] ∀i , j ∈ R}
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Algorithmic Requirements

Boltzmann Fashion

Expressing a probability distribution as a Boltzmann Distribution

With this setting ∀i ρ(ri ) > 0 and up to an additive constant we can find{
Z , {ui}

}
such that

∀r ρ(ri ) = ρi =
eui

Z
: Z =

∑
i

eui (4.1)

Which is just a rewording of the distribution. It is not easy to sample
directly, Z is a huge sum.

Boltzmann precisely

ui = −E (ri )

T
for a temperature T . We will use this later.
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Algorithmic Requirements

Theoretical MC requirements I

Strong Stationarity Necessary conditions

{Xt} : ∃Q : Qρ = ρ ⇐⇒ ∀i ∈ Xnon null recurrent (4.2)

This is not enough, imagine if we sampled from a distribution stuck at one
point forever. It would be stationary, but it would always depend on its
starting point and never explore the space. We need something else.

What is missing

After a property of the distribution we need a property of the process itself
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Algorithmic Requirements

Theoretical MC requirements II

Ergodic theorem

{Xt} : ∀i ∈ X i ergodic =⇒ lim
tmax→∞

tmax∏
t

Q(t)X0 = ρ (4.3)

∀j lim
t→∞

P[Xn = j ] = lim
t→∞

∑
i∈X

P[Xt = j |X0 = i ]P[X0 = i ] (4.4)∑
i∈X

P[X0 = i ]p∗[X = j ] (4.5)

= p∗[X = j ] ⊥⊥ t =⇒ p∗[X = j ] = ρj (4.6)

Moreover this implies that if g is a bounded function:

=⇒ E[ĝ(X )]
a.s.→ E[g(X )] (4.7)
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Algorithmic Requirements

Strong Stationarity effect

Strong Stationarity implies DBC

{Xt} : ∃Q : Qρ = ρ =⇒ ∀j ∈ X
∑
i 6=j

Qjiρi =
∑
k 6=j

Qkjρj

We call this condition Global Balance Condition (GBC). Intuitively,
inflow = outflow for every state.

Detailed Balance (DBC) Assumption

GBC is difficult to check or impose. We will assume detailed balance holds:

∀i , j ∈ X Qjiρi = Qijρj

Intuitively, each tuple has inflow = outflow . No joint dynamics considered.
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Algorithmic Requirements

Idea

Create an ergodic process such that:

It is easy to propose

given a configuration we propose another one accordingly
Ideally, this is done by comparing the Distance/Energy
For any tuning of any parameter, we always accept when the
Energy/Distance is lower.
We will use this notion:

PA split

In our setting, we wish to propose candidates that are valid. For this
reason, for each i , j tuple we will split the matrix into a proposal part P
and an acceptance part A

Qji = PjiAji (4.8)

Intuitively, Q is the distribution of shifts where each entry can be seen as:
P(sample j |i)P(accept j |i).
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Algorithmic Requirements

Simplifying work

Symmetric Proposals Assumption

P = PT ⇐⇒ Pji = Pij ∀i , j ∈ X

Delta Notation

∆ji :== uj − ui = −
(

E (rj)− E (ri )

T

)
Again, the E (·) part will be used later!
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Algorithmic Requirements

Building A (I): The rule

Metropolis Rule

In terms of practice, the most widely used proposal auxiliary function is
called Metropolis Rule. It merges both previous rules.

h(∆ji ) = |∆ji | (4.9)

Metropolis Rule Properties

If the Metropolis Rule is used for a matrix A then ∀i , j ∈ X :

Aji = min

{
1,
ρj
ρi

}
= min

{
1,

P(rcandidate)

P(rcurrent)

}
(4.10)

Further details in the lecture notes!
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Algorithmic Requirements

Building A (II): The rule

Proof part one

Aji = exp

{
1

2
(∆ji − |∆ji |)

}
applying M rule (4.11)

⇐⇒

{
e0 = 1 if ∆ji ≥ 0

e∆ji = exp{−∆Eji

T } if ∆ji < 0
Expanding the modulus (4.12)

⇐⇒ Aji = min

{
1, e∆ji

}
considering both cases (4.13)

⇐⇒ Aji = min

{
1,
ρj
ρi

}
Explained below (4.14)
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Algorithmic Requirements

Building A (III): The rule

Proof part two

Where the last passage comes from the fact that:

e∆ji = euj−ui = exp

{
−

E (rj)− E (ri )

T

}
=

exp

(
−E(rj )

T

)
Z

exp

(
−E(ri )

T

)
Z

=
ρj
ρi

whenever a move is beneficial in terms of reduced distance we accept
it

in the opposite case acceptance depends on the relative change and
decays quickly (being inside an exponent)

In any non-decreasing-distance proposal, the probability of acceptance
depends on T .
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Algorithmic Requirements

The role of T

T extreme cases

for T →∞ we have ρ→ U(R) =⇒ Random Walk, always accept
candidates

for T → 0 we have ρ→ 1(rmin) =⇒ accept iff ∆ji ≥ 0

These results are proved in the Lecture Notes!

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 35 / 60



Algorithmic Requirements

Example

Figure: Uniform for T →∞ Figure: Concentrated for T → 0

Credits: Bocconi University, Computer Programming, 30509 (awesome class!)
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Algorithmic Requirements

Building P (I)

P represents the distribution of feasible proposal routes. It must hold that
an instance:

starts and ends at the same city

touches all cities only once =⇒ |rcand | = N

does not dis-join the tour =⇒ keeps the path valid.

Is possibly easy to evaluate in terms of comparison with different rs

An efficient P for TSP

propose a switch of cities

rcurr : {i � j , v � r} rcand : {i � v , j � r}

That satisfies the requirements. Under random sampling and appropriate
checking of the candidate, sample randomly from Rvalid(x)∀r ∈ R
configurations
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Algorithmic Requirements

Building P (II)

∆E is easy

∆E = E (rcand)− E (rcurr ) (4.15)

= div + djr − dij − djr (4.16)

As all the other distances are the
same and cancel out.

We will refer to P as a kernel
k(·|rcurrent). It is easy to sample from
this kernel.

Figure: City swap graphically
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Simulated Annealing

Lecture Path

1 Preliminaries

2 Intro to the application

3 Complexity Assessment

4 Algorithmic Requirements

5 Simulated Annealing

6 Takeaways
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Simulated Annealing

A Stochastic Solution

One T is not enough!

When T =∞ we would need O(N!) operations to reach the solution
in the worst case

When T = 0 we would get stuck at local minimas if the energy
function E is non-convex (highly likely this is the case)

∀T ∈ (0,∞) the distribution concentrates around the global minima
but does not avoid escaping all local minimas, as the selectiveness
blocks the procedure at depression areas.

What if we could use all of them?
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Simulated Annealing

Again, inspiration from Nature

Informal Simulated Annealing (SA)

Simulated Annealing is an approach that finds a balance between the
extremes, gradually decreasing the temperature to explore at the beginning
and sequentially become more selective as T → 0.
Its name comes from the Physical process of annealing, which Wikipedia
defines as follows:

[...](annealing) involves heating a material above its recrystallization
temperature, maintaining a suitable temperature for an appropriate

amount of time and then cooling
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Simulated Annealing

Dealing with T

Temperature Schedule T

Given a sequence of natural numbers {1, . . . , tmax} ⊂ N:

T : {1, . . . , tmax} → [0,∞) : ∀c ′ > c T (c ′) ≤ T (c) (5.1)

We could also impose:

T (0) =∞∨ T (tmax) = 0

But this is not necessary. T is thus a decreasing function in the region.

Using this schedule:

choose a random starting configuration r0,

for a given number of iterations tmax ∈ N explore the space R
with different selectiveness granularities
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Simulated Annealing

Procedure

Algorithm 3 Simulated Annealing

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x
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Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 44 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 45 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 46 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 47 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 48 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 49 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 50 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 51 / 60



Simulated Annealing

Procedure, line by line

Require: r0 and E (·), tmax and T (·), k(·|·)
r ← r0 . we assign r as the starting configuration, r is current
for i = 1, . . . , tmax do . for a given number of iterations

rcand ∼ k(·|r) . sample a valid candidate from P
ti = T (i) . ti is the current temperature
∆E = E (rcand)− E (r) . new-old energy change
draw ui ∼ U(0, 1) . ui used to simulate a probability

if ui ≤ min

{
1, exp

[
− ∆E

ti

]}
then . Metropolis rule

r ← rcand . xcand is the update of x , move accepted
end if . otherwise x is unchanged

end for
return x

Giancola, Simone (UniBocconi) Simulated Annealing MCC, Harvard 2022 52 / 60



Simulated Annealing

An observation

Output

The returned value r will be a
configuration, the result of an
iterative process of exploration of
routes which gradually accepts less
and less worse proposals until it
reaches a minimum solution.

Figure: Algorithm Desired behavior

Credits: Bocconi University, Computer Programming, 30509 (awesome class!)
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Takeaways

Lecture Path

1 Preliminaries

2 Intro to the application

3 Complexity Assessment

4 Algorithmic Requirements

5 Simulated Annealing

6 Takeaways
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Takeaways

Relaxing assumptions

Throughout the process, we could have made things more difficult.

Asymmetric TSP

Code the problem (many sources on the internet)

Asymmetric proposals

Acceptance rule slightly more complicated

Proving all the statements
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Takeaways

Main points

We are given a complex problem in combinatorics

Find an iterative solution with a metaheuristic method

All thanks to the detailed balance condition!
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Takeaways

Limitations

Clearly, not exact

solving TSP efficiently would imply P = NP

Needs tuning, case by case analysis

Requires efficient sampling, otherwise no time saved

smooth energy function makes SA redundant

slower than more straightforward optimization
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Takeaways

Concluding

Any question/discussion, let
me know!

Thank you!
simonegiancola09@gmail.com

personal webpage
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