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Modern Developments:  
Models, Resources, Reductions
Module I: The Mathematical Foundation of Computation



Last Lecture

This Lecture

- Mathematical definitions of computation.

- Turing machine.

- Gödel’s incompleteness theorems.

- Uncomputability theorems.

- Church-Turing thesis. - Different computational models.


- Different computational resources.

- Efficiency and complexity.

- Reductions.

- Cook-Levin theorem.
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Turing Machine is not Alone!
Different computational models reveal different aspects of computation

“Turing-Complete” 
Models

-calculusλ

Programming 
language

Video games

Weaker Models

Finite automata

[\w._%+-]+@[\w.-]+\.[a-zA-Z]{2,4}

Regular expression

Other Models

Circuit

Communication model
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Example 1: Circuits

5



Example 1: Circuits
Circuits are computational models that can be described by “gates” and “wires”.

* More on quantum circuits in Lecture II.b.

Boolean Circuits

∧

∨

∧ ∧ ∧

x ¬y x ¬z y z

Logical AND

Logical OR

Logical NOT

Arithmetic Circuits

+

×

+ + +

x y x z y z

Addition

Multiplication

Quantum Circuits

U5

U4

U1 U2 U3

x y x z y z

Quantum gates

The number of inputs of a circuit is pre-fixed!
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Example 1: Circuits

Boolean Circuits Arithmetic Circuits

∧

∧ ∧ ∧

x ¬y x ¬z y z

+

+ + +

x y x z y z

∨

Logical AND

Logical OR ×

Addition

Multiplication

( )x = 1, y = 1, z = 0 ( )x = 1, y = 2, z = 3
Logical NOT
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Example 2: Communication Models

f : {0,1}* × {0,1}* → {0,1}*

x y

Goal: Compute  through communication!f(x, y)
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Example 2: Communication Models

EQ5(x1…, x5, y1, …, y5) = {1, x1 = y1, x2 = y2, …, x5 = y5

0, else.



(e.g., 01001)
x1, …, x5 


(e.g., 01011)
y1, …, y5

• The “communication protocol” is fixed before seeing the inputs. 

• 5 bits of communication is needed!

* When generalize to , with “shared randomness”,  bits is sufficient!EQn O(log n)

* Another example in later slides and more mathematical details in references.

My first bit is ___

My second bit is ___

My third bit is ___

My last bit is ___
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Different Computational Resources
Toward a better understanding of the essence of computation

Time Space Nondeterminism

Randomness Quantumness Interaction

In particular, all these resources can be quantified!
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Example 1: Nondeterminism
The existence of creativity and free will!?

* More mathematical details in references, more on creativity in guest talk III.b and III.c, more on free will in lecture II.c.

Q: The original definition of Turing machine follows deterministic rules, how 
to explain the “Aha moment” in our experience?

Nondeterminism Verifiable GuessesMathematically modeled as

Solving math 
problems Creating art

Coming up with 
new ideas
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Nondeterminism  Verifiable Guesses→

Where’s Wally?
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Boolean Satisfiability Problem
3SAT

(x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (x ∨ y ∨ ¬z)

Logical ANDLogical OR Logical NOT

(x ∨ ¬z) ∧ (¬x ∨ z) ∧ (¬x ∨ ¬z) ∧ (x ∨ z)

Satisfiable 🙂  
(e.g., )x = y = z = 1

Not satisfiable 😔

Circuit-SAT

∧

∨

∧ ∧ ∧

x ¬y x ¬z y z

Logical AND

Logical OR

Logical NOT

∧

∨

∧ ∧

x ¬y x ¬z z

Not satisfiable 😔 Satisfiable 🙂  
(e.g., )x = z = 1,y = 0

If the input is satisfiable  there’s a simple way to verify!⇒
* Note that for non-satisfiable input, it might not be easy to verify its unsatisfiability!13



Example 2: Randomness & Quantumness
How does stochasticity play a role in computation?

* More details on quantum in Lectures II.b and Advanced section II.c, II.d.

Example: A simple randomized 
algorithm for Max-CUT

w.p. 0.5

w.p. 0.5

Q: Can you remove the randomness? Q: Can you remove the quantumness?

Example: Shor’s quantum 
factoring algorithm

124307

197  631×

Some “quantum”
operations 

On average, the cut size will be 
at least half the optimal size!
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Modern Study of Computation: 
Computability  Complexity→
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Efficiency and Complexity
All resources and models can still be simulated by a deterministic Turing machine!

But…

Computational Complexity Conference (CCC)

- Take computational efficiency into account.


- The amount of resources needed  the 
complexity of a computational problem.


Q: How to mathematically model complexity?

⇒

the simulation could be inefficient!
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- Algorithm design matters.


- Hardware/Software implementation matters.


- The difficulty of input matters.

Formulation of Computational Complexity
With a focus on time complexity

* More mathematical details in advanced sections and philosophical discussion in lecture I.c and guest talk I.

Example: -digit Multiplicationn

Schoolbook multiplication Harvey-Hoeven algorithm

1010101010 × 999999999 6384910743 × 1749380901

 Best possible algorithm⇒

 Worst-case scenario⇒

 Focus on “asymptotic”⇒
O(n log n)
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Example: 
- P = problems that don’t cost too much time. 

- NP = P + nondeterminism.

- BPP = P + randomness.

- BQP = P + quantumness.

- PSPACE = problems that don’t cost too much space. 

Complexity Classes
Informal Definition (Complexity class).

A complexity class is a collection of computational problems that cost 
similar computational resources.

P NPP=NP or
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“Cost Similarly” & “Not Cost too Much”
Three concepts that save the days for complexity theorists

Asymptotic Big O notation Polynomial time

Study how does the 
cost scale with the 
input size.

Ignore minor factor & 
constants not scaled 
with the input size.

Example: 
- 


-

2n2 + 100 = O(n2) .
2n

100
+ n100 = O(2n) .

Efficient = the scaling 
is polynomial in the 
input size.
Example: 
-  is efficient.


-  is inefficient.

2n1000 + 100
2n

10000
+ n
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Example“Efficiency of 
Algorithms and the 
Sorites Paradox”

Lijie Chen

(Jan. 11 11am-12pm ET)

n = 1,…,50 n = 1,…,100 n = 1,…,200

f(n) = 10n

g(n) = 2n/10
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Questions Asked in Complexity Theory

P

NPcoNP

PSPACE

BPP

BQP

Separation: showing two complexity classes 
are not the same.


Simulation: showing one complexity class 
contains the other.


Examples: 

- P vs. NP: whether nondeterminism helps?

- P vs. BPP: whether randomness helps?

- P vs. BQP: whether quantumness helps?
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The Gem of Theoretical CS
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Reductions
The main sword in the theory of computation

Informal Definition (Reduction).

We say problem A can be reduced to problem B, denoted as 

 

if one can “efficiently” compute A with the help of B.
A ≤ B

A B
Multiplication Addition

Feasible computation Turing machine
Kid Parents

* The last example is just for illustration, I’m not aware of any mathematical proof for it and I doubt it’s correctness.23



Various Ways to Think About Reductions

Blackbox/Oracle Subroutine/Macro

Turing ReductionKarp Reduction

∧

∨

∧ ∧ ∧

x ¬y x ¬z y z

(x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (x ∨ y ∨ ¬z)

A ≤ B
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Example 1: Cook-Levin Theorem
Identify the most difficult problem in a complexity class!

Cook-Levin Theorem

Every problem in NP can be reduced to 3SAT in polynomial time. Namely, 
3SAT is NP-hard.

Nondeterminism 
= 

Verifiable guesses

NP = problems that can be 
efficiently verified.

∧

∨

∧ ∧ ∧

x ¬y x ¬z y z

Use Circuit-SAT to 
efficiently verify

(x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (x ∨ y ∨ ¬z)

Circuit-SAT  3SAT≤
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Apply Cook-Levin Theorem on Wally!

Use Circuit-SAT 
to efficiently verify









(x ∨ ¬y ∨ z)
∧ (¬x ∨ z)

⋮
∧ (x ∨ y ∨ ¬z)

Circuit-SAT  3SAT≤Where’s Wally?

More on Cook-Levin Theorem in Lecture I.c and II.c!
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Example 2: Communication Complexity
The Karchmer-Wigderson Games (KW games)

3-colorable 🙂 

Goal: Use the least amount of 
communication to find an edge 
appearing on only one side!

Not 3-colorable 😔
27



KW Games  Boolean Circuits≤

…

Not 3-colorable 😔3-colorable 🙂 

Goal: Find an edge 
appearing only on 

one side!

0 1 1 1
0 1 1 0

1 0

A KW game for 3-coloring

…

∧

∨

: Logical AND∧

: Logical OR∨

…

∧ ∧ ∧

A Boolean circuit for 3-coloring

1 10 1

1 10 0

1 11 0

Go left
Go left

Go right
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KW Games  Boolean Circuits≤

…

Not 3-colorable 😔3-colorable 🙂 

Goal: Find an edge 
appearing only on 

one side!

0 1 1 1
0 1 1 0

1 0

A KW game for 3-coloring

…

∧

∨

: Logical AND∧

: Logical OR∨

…

∧ ∧ ∧

A Boolean circuit for 3-coloring

1 10 1

1 10 0

1 11 0

Go left
Go left

Go right

≤# Bits 
Communicated

Depth of the 
Circuit

29



Reductions are Ubiquitous!

Cryptography

968105639

(Factoring problem) ≤≤

13147*73637

Real Life!

≤≤

≤≤

≤≤
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Next

“Efficiency of Algorithms and the Sorites Paradox”

Lijie Chen

(Jan. 11 11am-12pm ET)

Abstract: Why do theoretical computer scientists think of an algorithm with running 
time  being efficient while another with running time  being 
inefficient? In this talk, I'm going to introduce you to a philosophical foundation of 
this central formalism in theoretical CS. I will guide you to rethink about the 
definition of "efficient algorithm" through the lens of Sorites paradox. Furthermore, 
we will touch on connections to Moore's law, cosmology, and beyond. Hope that 
after the talk, you won't feel that you are old when you wake up tomorrow! (if you 
didn't get this joke, you will after attending my talk!)

100000n 2n/10000
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More!

Reijo

(Jan. 11 

2pm-3pm ET)

“Undecidability of the Halting 
Problem and Gödel’s 

incompleteness Theorem”

Prahlad

(Jan. 12 

9am-10am ET)

“The Four Color 
Theorem”

See the abstract for 
their talks on the 
course website!

Lecture II.a

(Jan. 12 10am-10:50am ET)

Lecture III.a

(Jan. 12 11am-11:50am ET)

Lecture I.c

(Jan. 17 10am-10:50am ET)32



Summary

33



Key Concepts
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Food for Thought
Q: Which do you find being more intuitive? Circuits or Turing machines? Why? 
Q: Do you think here we elaborate all the possible computational resources? If 
no, can you name more?

Q: Suppose something is easily verifiable (e.g., Where’s Wally), is it also easy to 
prove it wrong (i.e., is it easy to prove that Wally is not in the picture?)?

Exercise
• Think about how to explain the P vs. NP problem to your friends or families! In 

particular, try to use both an intuitive example and a slightly mathematical 
formulation.


• Can you come up with some examples of reductions? Either in CS, other 
fields, or even in daily life.
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