

(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated Random Graphs

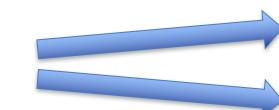
Boaz Barak, Chi-Ning Chou, Zhixian Lei, Tselil Schramm, Yueqi Sheng Harvard University, MA, USA

□ Motivation

De-anonymization (e.g., matching social networks)

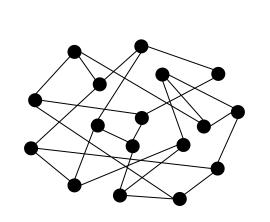
Matching the users

➤ Malware detection (e.g., finding suspicious patterns in a code)

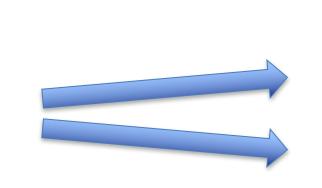


□ Problem Formulation

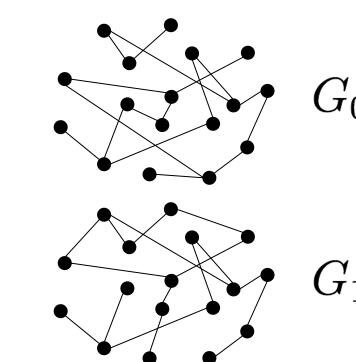
- \succ The distance between two graphs: $\min_{\pi \in S} \|G_0 \pi(G_1)\|_0$.
- > Input model: Correlated Erdös-Rényi Graphs.



Erdös-Rényi graph



Remove each edge i.i.d. with prob. q



- > Two computational problems:
- Graph similarity: hypothesis testing. Given (G_0, G_1) , distinguish (i) correlated Erdös-Rényi and (ii) independent Erdös-Rényi.
- ullet Graph matching: recovery. Given (G_0, G_1) sampled from correlated Erdös-Rényi, find the π^* that minimizes the distance.

☐ Prior Work

> Only exponential time algorithms were known, e.g., percolation.

Our Results

- > Graph similarity: We give the *first polynomial time* algorithm.
- > Graph matching: We give the first quasi-polynomial time algorithm.

Paper	Algorithm	Runtime
Cullina & Kivayash	Info-theoretic	$\exp(O(n))$
Yartseva & Grossglauser	percolation	$\exp((1-\delta)n)$
This work	Subgraph matching	$n^{O(\log n)}$ *
Mossel & Xu	Seeded local statistics	$n^{O(\log n)}$ *

* The runtime does not work for all regimes. Ask me for more details!

☐ Our "Black Swan" Approach

> Intuition: Use a family of small graphs (a flock of black swans) as the features to compare (G_0, G_1) .

A Swan	A Black Swan
The variance of #appearance is large.	✓ #appearance concentrates near exp.
Too many automorphisms.	✓ Unique automorphism.
Large overlap with other swans.	✓ Small overlap with other black swans.

Difficulties: Construct a large family of black swans with the desiring properties.

□ Algorithms

- Graph similarity: Use the correlation of the black swan counts to perform hypothesis testing.
- Let \mathcal{H} be a family of black swans and $X_H(G)$ be the # of H's in G.
- ◆ Define the correlation polynomial:

$$P_{\mathcal{H}}(G_0, G_1) = \frac{1}{|\mathcal{H}|} \sum_{H \in \mathcal{H}} (X_H(G_0) - \mathbb{E}_G X_H(G)) (X_H(G_1) - \mathbb{E}_G X_H(G)).$$

- (Correlated Erdös-Rényi): $|P_{\mathcal{H}}(G_0, G_1)|$ is large.
- (Independent Correlated Erdös-Rényi): $|P_{\mathcal{H}}(G_0, G_1)|$ is small.
- > Graph matching: For each vertex v, the black swan family gives a signature vector according to the position of v in each swan.
 - ◆ (Partial assignment): The uniqueness of each swan guarantees the signature vector from G_0 and G_1 of the same vertex being close. This holds w.h.p. for many vertices and give a partial assignment.
 - ◆ (Boosting): Use the partial assignment as the seeds and generate a full permutation that matches G_0 and G_1 .

□ Future Directions

- > For theorists: (i) Improve the runtime, (ii) construct black swans for a larger range of parameters, and (iii) computational limitation.
- > For experimentalists: Can our black swan approach guide practical algorithms for graph matching?

◆ Conference version:

