Tracking the /5> Norm with
Constant Update Time

Chi-Ning Chou Zhixian Lei Preetum Nakkiran

Harvard University

APPROX 2019

Streaming Algorithms

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

O =1{t elt]: av =i}

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

@ £ —

o O O o =

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

oo o -

O O o = =

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

nan o -

O -4 O A 4

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

gonea o -

O = ON =

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

0 2)le)(2](5) £6)

—_ =L O N -

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

SBIE3IEN | E3(ES FO) =

—_ L O W -

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

SBIEIIENE(EN(EI(ED FO =

— =2 O W N

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

SB|E3(EY|EN|ENEIERIER f& =

2

- = O W W

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

SB[EIENE N EIERERIEN FO =

2

N = O W W

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, aq,...,a,, € |n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each ¢t € [m],i € [n], define

[=1{t €lt]: ap =i},
Example: /o norm = # of distinct elements; ¢, norm = t.

e Example: n = 5 and m = 10.

DEEEROAEE] M-

2

N = O B~ W

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, as, ..., a, € [n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each t € [m],i € [n], define

9 =1{t' elt]: aw =i}].

Example: o norm = # of distinct elements; ¢; norm = t.

* Applications: Database optimization, network traffic etc.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, as, ..., a, € [n].

* Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

* Frequency Vector: For each t € [m],i € [n], define

9 =1{t' elt]: aw =i}].

Example: o norm = # of distinct elements; ¢; norm = t.
* Applications: Database optimization, network traffic etc.

* Goal: Randomized algorithms using sublinear space.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, as, ..., am € [n]. g

* Output: Some statistics of the inputs.

Deterministic algorithm:

©(min{m, n}) space.

~

J

Example: # of distinct elements in the input stream.

* Frequency Vector: For each t € [m],i € [n], define

fO=1{t el : ap =i}].
Example: o norm = # of distinct elements; ¢; norm = t.

* Applications: Database optimization, network traffic etc.

* Goal: Randomized algorithms using sublinear space.

Streaming Algorithms

* Input: A stream of inputs from the alphabet set.

Example: a1, as, ..., am € [n]. g

* Output: Some statistics of the inputs.

Deterministic algorithm:

©(min{m, n}) space.

~

J

Example: # of distinct elements in the input stream.

* Frequency Vector: For each t € [m],i € [n], define

fO=1{t el : ap =i}].
Example: o norm = # of distinct elements; ¢; norm = t.

* Applications: Database optimization, network traffic etc.

* Goal: Randomized algorithms using sublinear space.

/5 Estimation

/5 Estimation

e Goal: Estimating the /> norm of the frequency vector in
sublinear space.

/5 Estimation

e Goal: Estimating the /> norm of the frequency vector in
sublinear space.

* (¢,0)-One-shot estimation: Output o, s.t.
Pr (| — ILF™ 3] > el F™3] <0,

/5 Estimation

e Goal: Estimating the /> norm of the frequency vector in
sublinear space.

* (¢,0)-One-shot estimation: Output o, s.t.
Pr (| — ILF™ 3] > el F™3] <0,

* (¢,0)-Weak tracking: Output 01,02,...,0m s.t.
Pr 3iepm |on = IF O3] > el £ 3] <.

/5 Estimation

e Goal: Estimating the /> norm of the frequency vector in
sublinear space.

* (¢,0)-One-shot estimation: Output o, s.t.
Pr (| — ILF™ 3] > el F™3] <0,

* (¢,0)-Weak tracking: Output 01,02,...,0m s.t.
Pr 3iepm |on = IF O3] > el £ 3] <.

* (¢,0)-Strong tracking: Output 01,02,...,0m s.1.
Pr [Jyepm [o0 = IIFONZ| > el /O3] <0

/5 Estimation

e Goal: Estimating the /> norm of the frequency vector in
sublinear space.

* (¢,0)-One-shot estimation: Output o, s.t.
Pr (| — ILF™ 3] > el F™3] <0,

* (¢,0)-Weak tracking: Output 01,02,...,0m s.t.
Pr (3uepm |on = 1/ O3] > el F13] <0

* (¢,0)-Strong tracking: Output 01,02,...,0m s.1.
Pr [Jyepm [o0 = IIFONZ| > el /O3] <0

[Strong tracking => Weak tracking => One-shot J

4

/5 Estimation

e Goal: Estimating the /> norm of the frequency vector in
sublinear space.

* (¢,0)-One-shot estimation: Output o, s.t.
Pr (| — ILF™ 3] > el F™3] <0,

* (¢,0)-Weak tracking: Output 01,02,...,0m s.t.

Pr 3iepm |on = IF O3] > el £ 3] <.

* (¢,0)-Strong tracking: Output 01,02,...,0m s.1.
Pr [Jyepm [o0 = IIFONZ| > el /O3] <0

[Strong tracking => Weak tracking => One-shot j

4

Linear Sketch

Linear Sketch

* Linear sketch is a special class of streaming algorithms.

Linear Sketch

* Linear sketch is a special class of streaming algorithms.
(L

-
- .-

\

y k< n

Sketching matrix II

Linear Sketch

* Linear sketch is a special class of streaming algorithms.
(L

-
- .-

» k< n

Sketching vector T11() Sketching matrix IT

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/
(L

-
- .-

AEIEESIERE SRR SIEIERERR
1 A -]
— [A 11 1] k<€ n
AR E R R E IR EEI R EIE

A ISIEISIER RS RSB INR R SInY

1 1
1 1

Sketching vector IIf® Sketching matrix II

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/
(L

_— -

-5 .-

1 1 Kl I EI R EIEIEI EIEIEIEIER RN

1 s Xl EI R R IR R EIE R R EI IR

1 VR Bl SIRERERRCICICIC IR NCIRRRRE b k<< n

1 21 Bl FIREE AR IR IEIEI R IR I

1 i Bl BRI R R EIEI NN EEY
Sketching vector Hf(t) Sketching matrix II

2]

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/
(L

-
- .-

-2 I EIFIEIEIEIE] B EIEIEIEIEIFIEE R

-2 R EIEIEIEIEIEIE X1 CAEI R R B

0 R SRSIREREREE S SIS IRECIR IR b k<< n

0 REIEIFIEIENE] Bl I FIEI R R E

2 EIEIEIEIERE E1 PR EIEI RN R E Iy
Sketching vector T11() Sketching matrix IT

2)(8]

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/
(L

-
- .-

3 A EIE El IR EIEIEIEIEIEIEIFIEE R

1 R EIETE Kl BRI R BRI E1 R R B E

1 NCRESRs B EARRC I IREE IR IR \ k< n

1 AFIFIE] Bl BRI EIEIEIEIRI IR R

1 MEIE F BRI R R EI I R R E Ty
Sketching vector T11() Sketching matrix IT

2J(e)l

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/
(L

-
- .-

4 i E1 IR EIEIEIFI R EIEIF R

7 s Xl EI R R IR R EIE R R EI IR

2 VR Bl SIRERERRCICICIC IR NCIRRRRE b k<< n

2 O Al 111 A1 111

2 i Bl K R R IR EEY
Sketching vector 111 Sketching matrix II

2l

Linear Sketch AMS Sketch

[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms.

\/

» k< n

n
3 AEIFIE El IEIEIEIEIEIEIEIFIEE R
3 R EIEIEIE] Bl IR R R R R R R
3 — -l a1 a1 1]
3 CAFEIEIE O R EIEI R EIEE
3 A EIEIE] S PR R F N EI RN E R

Sketching vector T11() Sketching matrix IT

=))W

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/
(L

-
- .-

AEIEESIERE SRR SIEIERERR
1 A -]
— [A 11 1] k<€ n
AR E R R E IR EEI R EIE

A ISIEISIER RS RSB INR R SInY

1 1
1 1

Sketching vector IIf® Sketching matrix II

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/

(L
1 =11 =11 (111111 |-1]-1]1]1]
1 L=l === -1 1
1A A1 b k<< n
O 411111 1-1-1-11-1-1-1-1
1 =111 =11 111 -1 1]-1]-1]
Sketching vector ITf™" Sketching matrix II

 Space complexity: {O(lm) , truly random
O(klogn), pseudo-random

Linear Sketch AMS Sketch
[Alon-Matias-Szegedy 96]

* Linear sketch is a special class of streaming algorithms. \/

T
1 =11 =11 [1 [-1]-1]-1]1 |1]-1]-1]1 1]
1 L=l === -1 1
1A A1 b k<< n
O 411111 1-1-1-11-1-1-1-1
1 =111 =11 111 -1 1]-1]-1]
Sketching vector ITf™" Sketching matrix II

» Space complexity: {O(kn) , truly random Lcja” be even better
O(klogn), pseudo-random

Linear Sketch

* Linear sketch is a special class of streaming algorithms.

Sketching vector IIf®

e Space complexity: {

[Alon-Matias-Szegedy 96]

AMS Sketch

—t |k [[k |k

:
-1
-1

1

1 -

* AMS sketch: k& = O(¢?) for one-shot

and for weak tracking

Sketching matrix II

\/

y k< n

O(kn) , truly random |\C/3an be even better

O(klogn), pseudo-random

Update Time

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

e E.g., AMS sketch has ©(k) = ©(¢~*) update time complexity.

n
1 (=101 =11 (11111 (11111
4111 (=11 |-1]-1] 1 [-1]-1]-1]-1]-1] 1

Il = 114111444141 4111 pk<gn
40111 (11]-1]-1]=1[-1]1]-1]-1]-1]|-1
110101 =11 11101 =111]-1]-1]

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

e E.g., AMS sketch has ©(k) = ©(¢~*) update time complexity.

n
1 (=101 =11 (11111 (11111
4111 (=11 |-1]-1] 1 [-1]-1]-1]-1]-1] 1

Il = 114111444141 4111 pk<gn
40111 (11]-1]-1]=1[-1]1]-1]-1]-1]|-1
110101 =11 11101 =111]-1]-1]

e Application: Packet passing problem

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

e E.g., AMS sketch has ©(k) = ©(¢~*) update time complexity.

n
1 (=101 -1 === ==]
4|11 |1 (=11 [-1]-1] 1 |-1]-1]-1]-1[-1] 1

Il = 114111444141 4111 pk<gn
A1 =111 -1 1 =111 -1
11101101 1 =1 -1 1 =11 .

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

e E.g., AMS sketch has ©(k) = ©(¢~*) update time complexity.

n
1 (=101 -1 === ==]
4|11 |1 (=11 [-1]-1] 1 |-1]-1]-1]-1[-1] 1

Il = 114111444141 4111 pk<gn
A1 =111 -1 1 =111 -1
11101101 1 =1 -1 1 =11 .

Rate: 7.75 x 10°
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII *

<130 nanoseconds per packet)
4

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

e E.g., AMS sketch has ©(k) = ©(¢~*) update time complexity.

n
1 (=101 =11 (11111 (11111
4111 (=11 |-1]-1] 1 [-1]-1]-1]-1]-1] 1

Il = 114111444141 4111 pk<gn
40111 (11]-1]-1]=1[-1]1]-1]-1]-1]|-1
110101 =11 11101 =111]-1]-1]

e When ¢ is small, AMS sketch is slow. @f

Update Time

 Update time complexity for a linear sketch algorithm is the
number of field operations needed in each update.

e E.g., AMS sketch has ©(k) = ©(¢~*) update time complexity.

n
1 =11 -1 11 === ==]
4|11 |1 (=11 [-1]-1] 1 |-1]-1]-1]-1[-1] 1

Il = 114111444141 4111 pk<gn
A1 =111 -1 1 =111 -1
1 =11 -1 1 = -1 1 =11 .

e When € is small, AMS sketch is slow. @f

(Q: Is AMS Sketch optimal in update time complexity?j

8

Faster One-Shot Estimation

Faster One-Shot Estimation

e [Dasgupta-Kumar-Sarlos 10] and [Kane-Nelson 14] showed that
sparse JL achieves one-shot with O(¢ ') update time.

Faster One-Shot Estimation

e [Dasgupta-Kumar-Sarlos 10] and [Kane-Nelson 14] showed that
sparse JL achieves one-shot with O(¢ ') update time.

e [Thorup-Zhang 12] showed that CountSketch (proposed by
(Charikar-Chen-Farach-Colton 02]) achieves one-shot with O(1)
update time.

Faster One-Shot Estimation

. and showed that
sparse JL achieves one-shot with O(¢~ ') update time.

. showed that CountSketch (proposed by
) achieves one-shot with O(1)
update time.

e Application: Packet passing problem

Rate: 7.75 x 10°
............................... >
<130 nanoseconds per packet)

Faster One-Shot Estimation

. and showed that
sparse JL achieves one-shot with O(¢~ ') update time.

. showed that CountSketch (proposed by
) achieves one-shot with O(1)
update time.

e Application: Packet passing problem

Rate: 7.75 x 10° . i
<130 nanoseconds per packet)
showed that CountSketch improves AMS
sketch from 182 nanoseconds to 30 nanoseconds!

9

Faster One-Shot Estimation (Only for one-shotj

. and showed that
sparse JL achieves one-shot with O(¢~ ') update time.

. showed that CountSketch (proposed by
) achieves one-shot with O(1)
update time.

e Application: Packet passing problem

Rate: 7.75 x 10° . i
<130 nanoseconds per packet)
showed that CountSketch improves AMS
sketch from 182 nanoseconds to 30 nanoseconds!

9

What About Faster Linear Sketch
for Weak Tracking?

10

What About Faster Linear Sketch
for Weak Tracking?

Known

e O(1) time for one-shot
e O(e~?)time for weak tracking

10

What About Faster Linear Sketch
for Weak Tracking?

Known Unknown

e O(1) time for one-shot

e O(e?)time for weak tracking * O(1) time for weak tracking

10

CountSketch Provides Weak Tracking

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

g
(¢, §)-Weak tracking: Output ||[ILf™ |2, ... ||ITLf™)]2 s t.

Pr |ieqm I3 = 1FD13 > ell 3] < o

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

g
(¢, §)-Weak tracking: Output ||[ILf™ |2, ... ||ITLf™)]2 s t.

Pr |ieqm I3 = 1FD13 > ell 3] < o

Corollary (informal)

There is an O(1) time algorithm provides (¢, 0.1)-weak tracking.

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

* The first analysis for weak tracking with constant update time.

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

* The first analysis for weak tracking with constant update time.

* Using the median trick, there is a streaming algorithm
orovides (¢, 9) -weak tracking with O(log ¢ ') update time.

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

* The first analysis for weak tracking with constant update time.

* Using the median trick, there is a streaming algorithm
orovides (¢, 9) -weak tracking with O(log ¢ ') update time.

e The packet passing problem now has tracking guarantee.

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

* The first analysis for weak tracking with constant update time.

* Using the median trick, there is a streaming algorithm
orovides (¢, 9) -weak tracking with O(log ¢ ') update time.

e The packet passing problem now has tracking guarantee.

[The rest of the talk will focus on the proof . j

11

CountSketch Provides Weak Tracking

Theorem (informal)

CountSketch with O(e~*) rows provides (¢, 0.1)-weak tracking.

* The first analysis for weak tracking with constant update time.

* Using the median trick, there is a streaming algorithm
provides (¢, 0) -weak tracking with O(log 0) update time.

e The packet passing problem now has tracking guarantee.

[The rest of the talk will focus on the proof sketch.]

11

CountSketch [Charikar-Chen-Farach-Colton 02]

12

CountSketch [Charikar-Chen-Farach-Colton 02]

* ldea: Exactly one non-zero entry in each column.

000001 000O01-1000
0-11 0-10000O0O0O0O0-10O0
cooo00000-1-1-10 0100
-10 01 00-1000O0O0O0O0O

11 =

000O0O0O0O0O0O0OO0OO0OO0OO0DO0-1

12

CountSketch

* |dea: Exactly one non-zero entry in each column.

0000010000 1-1000
0-110-100000000-10

]l = oo0o0o0000-1-11001 00
100100-100000000
00000000O0O0OOO 0 -1
showed that CountSketch with O(¢~?) rows

achieve one-shot estimation.

12

CountSketch

* |dea: Exactly one non-zero entry in each column.

0000010000 1-1000
0-110-100000000-10

]l = oo0o0o0000-1-11001 00
100100-100000000
00000000O0O0OOO 0 -1
showed that CountSketch with O(¢~?) rows

achieve one-shot estimation.

e Analysis:

12

CountSketch

* |dea: Exactly one non-zero entry in each column.

0000010000 1-1000
0-110-100000000-10

]l = oo0o0o0000-1-11001 00
100100-100000000
00000000O0O0OOO 0 -1
showed that CountSketch with O(¢~?) rows

achieve one-shot estimation.
e Analysis:
= Obs: K [(HTH)U] =]-z':j :

12

CountSketch

* |dea: Exactly one non-zero entry in each column.

0000010000 1-1000
0-110-100000000-10

]l = oo0o0o0000-1-11001 00
100100-100000000
00000000O0O0OOO 0 -1
showed that CountSketch with O(¢~?) rows

achieve one-shot estimation.
e Analysis:
= Obs: K [(HTH)U] =]-z':j :

- Expectation: E [[ILf™[3| =E | > (7, £ £ | = 5.

12

CountSketch

* |dea: Exactly one non-zero entry in each column.

0000010000 1-1000
0-110-100000000-10

]l = oo0o0o0000-1-11001 00
100100-100000000
00000000O0O0OOO 0 -1
showed that CountSketch with O(¢~?) rows

achieve one-shot estimation.
e Analysis:
= Obs: K [(HTH)U] =]-z':j :

- Expectation: E [[ILf™[3| =E | > (7, £ £ | = 5.

= Apply Chebyshev’s inequality.

12

Intuition for Weak Tracking

13

Intuition for Weak Tracking

* First attempt: Apply union bound on one-shot analysis.

13

Intuition for Weak Tracking

* First attempt: Apply union bound on one-shot analysis.

)
(67 —> -one-shot
T

13

Intuition for Weak Tracking

* First attempt: Apply union bound on one-shot analysis.

0
(@E)—one-shot 9 (¢,0)-weak tracking

13

Intuition for Weak Tracking

* First attempt: Apply union bound on one-shot analysis.

0
<€,E>—one-shot 9 (¢,0)-weak tracking

- Using O (e 26 'm) rows (or O (e 26~ 'logm) rows after
median trick).

13

Intuition for Weak Tracking

* First attempt: Apply union bound on one-shot analysis.

0
<€,E>—one-shot 9 (¢,0)-weak tracking

- Using O (e 26 'm) rows (or O (e 26~ 'logm) rows after
median trick).

* |[dea: Using chaining argument [Braverman-Chestnut-lvkin-Nelson-
Wang-Woodruff 17] to get a fancier (and tighter) union bound.

13

Intuition for Weak Tracking

* First attempt: Apply union bound on one-shot analysis.

0
<€,E>—one-shot 9 (¢,0)-weak tracking

- Using O (e 26 'm) rows (or O (e 26~ 'logm) rows after
median trick).

e |[dea: Using chaining argument
to get a fancier (and tighter) union bound.

[We can get rid of the m dependency! j

13

Step 1: Extracting the Correlation

14

Step 1: Extracting the Correlation

~

(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.
Pr |ieqm I3 = 1FO13 > ell F3]] < o

14

Step 1: Extracting the Correlation

-
(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.

Pr |ieqm I3 = 1FO13 > ell F3]] < o

_

e Rewrite the error as:

ITLFO3 — | £33 =0"B, svo

where

14

Step 1: Extracting the Correlation

~

_

(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.
Pr |ieqm I3 = 1FO13 > ell F3]] < o

e Rewrite the error as:

ITLFO3 — | £33 =0"B, svo

where

- ce{-1,1}" and

14

Step 1: Extracting the Correlation

-
(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.

Pr 3y [ITLFO 3 = 17913 > ell r 3| <0

_

e Rewrite the error as:

IO =1 f D)3 =0"B, oo
where
- ce{-1,1}" and

~

- B, ;« dependson IT and).

14

Step 1: Extracting the Correlation

-
(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.

Pr 3y [ITLFO 3 = 17913 > ell r 3| <0

_

* Rewrite the error as: L/Highly correlated
IO = 19N =o' B, joo

where
- ce{-1,1}" and

~

- B, ;« dependson IT and).

14

Step 1: Extracting the Correlation

-
(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.

Pr |ieqm I3 = 1FO13 > ell F3]] < o

_

* Rewrite the error as: L/Highly correlated
IO = 19N =o' B, joo

where
- ce{-1,1}" and

~

- B, ;« dependson IT and).

e The bad event becomes:

14

Step 1: Extracting the Correlation

-
(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.

Pr |ieqm I3 = 1FO13 > ell F3]] < o

_

* Rewrite the error as: L/Highly correlated
IO = 19N =o' B, joo

where
- ce{-1,1}" and

~

- B, ;« dependson IT and).

e The bad event becomes:

sup |07 By, 0| > ell £
te[m

14

Step 1: Extracting the Correlation

-
(¢, §)-Weak tracking: Output |[ILf (|2, ... [|ITLf™)]2 s t.

Pr |ieqm I3 = 1FO13 > ell F3]] < o

_

* Rewrite the error as: L/Highly correlated
IO = 19N =o' B, joo

where
- ce{-1,1}" and

- B, ;) dependson II and f).

e The bad event becomes:

sup |07 By, 0| > €l 073
te[m]

14

Step 2: €-Net

15

Step 2: €-Net

15

Step 2: €-Net

15

Step 2: €-Net

e A sequence of nets 1y, 17, ... such that

15

Step 2: €-Net

e A sequence of nets 1y, 17, ... such that

15

Step 2: €-Net

e A sequence of nets 1y, 17, ... such that

15

Step 2: €-Net

e A sequence of nets 1y, 17, ... such that

15

Step 2: €-Net

e A sequence of nets 1y, 17, ... such that

- The coarser the net is, the smaller it is.

15

4 _
Goal: - -
Pr | sup |o Bn’f(t)a-‘ > el fU)3] <o0.1
te[m]
\ -
- Q@
~° ° B4 ° EO ~°
B4 B B m—?2 B,
5 @ 0 - Q@
~° ~° m

* A sequence of nets 1,17, ..

- The coarser the net Is, t

» Telescoping B, ;) using t

. such that

ne smaller it Is.

nese nets

15

Step 2: €-Net

4 _ _)
Goal. -)
Pr | sup |o anf(t)g‘ > e U3 <0.1
te[m]
_ - 5 v
- Q@
~° o B4 ° BO ~°
Bl B B m—2 Bm
° 3 o 6 -Q
~ B - m—1
BQ ° B7

* A sequence of nets 1,17, ... such that

- The coarser the net Is, the smaller it is.

e Telescoping B, ;) using these nets
- Sup % (Bn,fm) < sup v (Bff%) + Z Sup ’Y((t) 37(724)
te|m] te|m] _q1 t€lm

15

Step 2: €-Net

4 _ _)
Goal. -)
Pr | sup |o Bn7f<t)0‘ > e U3 <0.1
te[m]
_ - 5 v
- Q@
~° o B4 o BO ~°
Bl B B m—2 Bm
° 3 o 6 -Q
~ B - m—1
BQ ° B7

* A sequence of nets 1,17, ... such that

- The coarser the net Is, the smaller it is.

e Telescoping B, ;) using these nets

- sup vy (B,,%f(t)) < sup Y (qu%) + S:
/=1

te[m]

sup -y (B,,% — Bf?f%_l)
T,

L)

15

Step 2: €-Net

* A sequence of nets 1p,17, ... such that
- The coarser the net is, the smaller it is.

e Telescoping B, ;) using these nets

- sup (Bn,f(w) < sup v (Bf,(yt2)> T Z Sup -y (B?(f«)@ - BSZ—J

SER - RS 5

15

What’s Missing...

16

What’s Missing...

* Dudley’s inequality.

16

What’s Missing...

* Dudley’s inequality.

* How to bound the size of €-net for {B, ;@ }tefn ?

16

What’s Missing...

* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B,) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

16

What’s Missing...

* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B,) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

e How to bound the error magnitude?

16

What’s Missing...

* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B,) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

e How to bound the error magnitude?

- Using the Hansen-Wright inequality for the moments of

o' Bo —E[o ' Bol.

16

What’s Missing...

* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B,) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

e How to bound the error magnitude?

- Using the Hansen-Wright inequality for the moments of

o' Bo —E[o ' Bol.

e High probability regime?

16

What’s Missing...

* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B,) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

e How to bound the error magnitude?

- Using the Hansen-Wright inequality for the moments of

o' Bo —E[o ' Bol.

e High probability regime?
- Median trick.

16

What’s Missing...

* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B,) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

e How to bound the error magnitude?

- Using the Hansen-Wright inequality for the moments of

o' Bo —E[o ' Bol.

e High probability regime?

- Median trick. [Ask me offline for more details! j

16

Conclusion

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking

for {5 estimation with constant update time.

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

e Future directions:

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

e Future directions:

- Empirical performance of CountSketch?

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

e Future directions:
- Empirical performance of CountSketch?

- Weak tracking for £, norm with faster update time?

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

e Future directions:
- Empirical performance of CountSketch?

- Weak tracking for £, norm with faster update time?

- Other applications of charing technique?

17

Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

e Future directions:
- Empirical performance of CountSketch?

- Weak tracking for £, norm with faster update time?

- Other applications of charing technique?

[Thanks for your attention, questions?j

17

