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* |dea: Exactly one non-zero entry in each column.

0000010000 1-1000
0-110-100000000-10

]l = oo0o0o0000-1-11001 00
100100-100000000
00000000O0O0OOO 0 -1
showed that CountSketch with O(¢~?) rows

achieve one-shot estimation.
e Analysis:
= Obs: K [(HTH)U] = ]-z':j :

- Expectation: E [[ILf™[3| =E | > (7, £ £ | = 5.

= Apply Chebyshev’s inequality.
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* First attempt: Apply union bound on one-shot analysis.

0
<€,E>—one-shot 9 (¢,0)-weak tracking

- Using O (e 26 'm) rows (or O (e 26~ 'logm) rows after
median trick).

e |[dea: Using chaining argument
to get a fancier (and tighter) union bound.

[We can get rid of the m dependency! j
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e Telescoping B, ;) using these nets
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* A sequence of nets 1p,17, ... such that
- The coarser the net is, the smaller it is.

e Telescoping B, ;) using these nets

- sup (Bn,f(w) < sup v (Bf,(yt2)> T Z Sup -y (B?(f«)@ - BSZ—J

SER - RS 5
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* Dudley’s inequality.
* How to bound the size of €-net for {B, ;@ }tefn ?
- Greedily pick from {B, ) }:c},,; and analyze by the

iInsertion-only structure of the input stream.

e How to bound the error magnitude?

- Using the Hansen-Wright inequality for the moments of

o' Bo —E[o ' Bol.

e High probability regime?

- Median trick. [Ask me offline for more details! j
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Conclusion

* WWe show the first streaming algorithm achieving weak tracking
for {5 estimation with constant update time.
- CountSketch and packet passing problem now have

tracking guarantee!

e Future directions:
- Empirical performance of CountSketch?

- Weak tracking for £, norm with faster update time?

- Other applications of charing technique?

[Thanks for your attention, questions?j
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