Tracking the ℓ_2 Norm with **Constant Update Time**

Chi-Ning Chou

Zhixian Lei Preetum Nakkiran

Harvard University

APPROX 2019

• Input: A stream of inputs from the alphabet set.

• Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

• Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

• Output: Some statistics of the inputs.

• Input: A stream of inputs from the alphabet set.

```
Example: a_1, a_2, ..., a_m \in [n].
```

Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

• Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(2)} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(3)} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(4)} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(5)} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(6)} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

$$f^{(7)} = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

• Example: n=5 and m=10.

1 2 4 2 5 2 1 1

$$f^{(8)} = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

• Example: n=5 and m=10.

1 2 4 2 5 2 1 1 5

$$f^{(9)} = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t] : a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

• Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

• Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t]: a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

• Applications: Database optimization, network traffic etc.

• Input: A stream of inputs from the alphabet set.

Example:
$$a_1, a_2, ..., a_m \in [n]$$
.

Output: Some statistics of the inputs.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t]: a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

- Applications: Database optimization, network traffic etc.
- Goal: Randomized algorithms using sublinear space.

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Deterministic algorithm: $\Theta(\min\{m, n\})$ space.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t]: a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

- Applications: Database optimization, network traffic etc.
- Goal: Randomized algorithms using sublinear space.

• Input: A stream of inputs from the alphabet set.

Example: $a_1, a_2, ..., a_m \in [n]$.

• Output: Some statistics of the inputs.

Deterministic algorithm: $\Theta(\min\{m, n\})$ space.

Example: # of distinct elements in the input stream.

• Frequency Vector: For each $t \in [m], i \in [n]$, define

$$f_i^{(t)} = |\{t' \in [t]: a_{t'} = i\}|.$$

Example: ℓ_0 norm = # of distinct elements; ℓ_1 norm = t.

- Applications: Database optimization, network traffic etc.
- Goal: Randomized algorithms using sublinear space.

Faster time!?

• Goal: Estimating the ℓ_2 norm of the frequency vector in sublinear space.

- Goal: Estimating the ℓ_2 norm of the frequency vector in sublinear space.
- (ϵ, δ) -One-shot estimation: Output σ_m s.t.

$$\Pr\left[\left| \sigma_m - \|f^{(m)}\|_2^2 \right| > \epsilon \|f^{(m)}\|_2^2 \right] \le \delta.$$

- **Goal**: Estimating the ℓ_2 norm of the frequency vector in sublinear space.
- (ϵ, δ) -One-shot estimation: Output σ_m s.t.

$$\Pr\left[\left| \sigma_m - \|f^{(m)}\|_2^2 \right| > \epsilon \|f^{(m)}\|_2^2 \right] \le \delta.$$

• (ϵ, δ) -Weak tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t\in[m]} \left|\sigma_t - \|f^{(t)}\|_2^2\right| > \epsilon \|f^{(m)}\|_2^2\right] \le \delta.$$

- Goal: Estimating the ℓ_2 norm of the frequency vector in sublinear space.
- (ϵ, δ) -One-shot estimation: Output σ_m s.t.

$$\Pr\left[\left| \sigma_m - \|f^{(m)}\|_2^2 \right| > \epsilon \|f^{(m)}\|_2^2 \right] \le \delta.$$

• (ϵ, δ) -Weak tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t\in[m]} \left|\sigma_t - \|f^{(t)}\|_2^2\right| > \epsilon \|f^{(m)}\|_2^2\right] \le \delta.$$

• (ϵ, δ) -Strong tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t \in [m]} \left| \sigma_t - \|f^{(t)}\|_2^2 \right| > \epsilon \|f^{(t)}\|_2^2 \right] \le \delta.$$

- Goal: Estimating the ℓ_2 norm of the frequency vector in sublinear space.
- (ϵ, δ) -One-shot estimation: Output σ_m s.t.

$$\Pr\left[\left|\sigma_{m} - \|f^{(m)}\|_{2}^{2}\right| > \epsilon \|f^{(m)}\|_{2}^{2}\right] \leq \delta.$$

• (ϵ, δ) -Weak tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t\in[m]} \left|\sigma_t - \|f^{(t)}\|_2^2\right| > \epsilon \|f^{(m)}\|_2^2\right] \le \delta.$$

• (ϵ, δ) -Strong tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t\in[m]} \left| \sigma_t - \|f^{(t)}\|_2^2 \right| > \epsilon \|f^{(t)}\|_2^2 \right] \le \delta.$$

Strong tracking => Weak tracking => One-shot

- Goal: Estimating the ℓ_2 norm of the frequency vector in sublinear space.
- (ϵ, δ) -One-shot estimation: Output σ_m s.t.

$$\Pr\left[\left| \sigma_m - \|f^{(m)}\|_2^2 \right| > \epsilon \|f^{(m)}\|_2^2 \right] \le \delta.$$

• (ϵ, δ) -Weak tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t\in[m]} \left|\sigma_t - \|f^{(t)}\|_2^2\right| > \epsilon \|f^{(m)}\|_2^2\right] \le \delta.$$

• (ϵ, δ) -Strong tracking: Output $\sigma_1, \sigma_2, \dots, \sigma_m$ s.t.

$$\Pr\left[\exists_{t\in[m]} \left| \sigma_t - \|f^{(t)}\|_2^2 \right| > \epsilon \|f^{(t)}\|_2^2 \right] \le \delta.$$

Strong tracking => Weak tracking => One-shot

• Linear sketch is a special class of streaming algorithms.

• Linear sketch is a special class of streaming algorithms.

Sketching matrix Π

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

2

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

2

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

2 8 4

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

2 8 4 2

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix ∏

2 8 4 2 5

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix ∏

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

• Space complexity:
$$\begin{cases} O(kn) & \text{, truly random} \\ O(k\log n) & \text{, pseudo-random} \end{cases}$$

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

• Space complexity:
$$\begin{cases} O(kn) & \text{, truly random} \end{cases}$$
 Can be even better $O(k \log n)$, pseudo-random

AMS Sketch

[Alon-Matias-Szegedy 96]

• Linear sketch is a special class of streaming algorithms.

Sketching vector $\Pi f^{(t)}$

Sketching matrix Π

• Space complexity: $\begin{cases} O(kn) & \text{, truly random} \end{cases}$ Can be even better $O(k\log n)$, pseudo-random

• AMS sketch: $k = O(\epsilon^{-2})$ for one-shot [Alon-Matias-Szegedy 96] and for weak tracking [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff 17].

6

• Update time complexity for a linear sketch algorithm is the number of field operations needed in each update.

- Update time complexity for a linear sketch algorithm is the number of field operations needed in each update.
- E.g., AMS sketch has $\Theta(k) = \Theta(\epsilon^{-2})$ update time complexity.

- **Update time complexity** for a linear sketch algorithm is the number of field operations needed in each update.
- E.g., AMS sketch has $\Theta(k) = \Theta(\epsilon^{-2})$ update time complexity.

Application: Packet passing problem [Krishnamurthy-Sen-

Zhang-Chen 03]

- Update time complexity for a linear sketch algorithm is the number of field operations needed in each update.
- E.g., AMS sketch has $\Theta(k) = \Theta(\epsilon^{-2})$ update time complexity.

Application: Packet passing problem [Krishnamurthy-Sen-

Zhang-Chen 03]

- **Update time complexity** for a linear sketch algorithm is the number of field operations needed in each update.
- E.g., AMS sketch has $\Theta(k) = \Theta(\epsilon^{-2})$ update time complexity.

Application: Packet passing problem [Krishnamurthy-Sen-

Zhang-Chen 03]

- Update time complexity for a linear sketch algorithm is the number of field operations needed in each update.
- E.g., AMS sketch has $\Theta(k) = \Theta(\epsilon^{-2})$ update time complexity.

• When ϵ is small, AMS sketch is slow.

- **Update time complexity** for a linear sketch algorithm is the number of field operations needed in each update.
- E.g., AMS sketch has $\Theta(k) = \Theta(\epsilon^{-2})$ update time complexity.

• When ϵ is small, AMS sketch is slow.

Q: Is AMS Sketch optimal in update time complexity?

• [Dasgupta-Kumar-Sarlós 10] and [Kane-Nelson 14] showed that sparse JL achieves one-shot with $O(\epsilon^{-1})$ update time.

- [Dasgupta-Kumar-Sarlós 10] and [Kane-Nelson 14] showed that sparse JL achieves one-shot with $O(\epsilon^{-1})$ update time.
- [Thorup-Zhang 12] showed that CountSketch (proposed by [Charikar-Chen-Farach-Colton 02]) achieves one-shot with O(1) update time.

- [Dasgupta-Kumar-Sarlós 10] and [Kane-Nelson 14] showed that sparse JL achieves one-shot with $O(\epsilon^{-1})$ update time.
- [Thorup-Zhang 12] showed that CountSketch (proposed by [Charikar-Chen-Farach-Colton 02]) achieves one-shot with O(1) update time.
- Application: Packet passing problem [Krishnamurthy-Sen-Zhang-Chen 03]

- [Dasgupta-Kumar-Sarlós 10] and [Kane-Nelson 14] showed that sparse JL achieves one-shot with $O(\epsilon^{-1})$ update time.
- [Thorup-Zhang 12] showed that CountSketch (proposed by [Charikar-Chen-Farach-Colton 02]) achieves one-shot with O(1) update time.
- Application: Packet passing problem [Krishnamurthy-Sen-Zhang-Chen 03]

[Thorup-Zhang 12] showed that CountSketch improves AMS sketch from **182** nanoseconds to **30** nanoseconds!

Only for one-shot

- [Dasgupta-Kumar-Sarlós 10] and [Kane-Nelson 14] showed that sparse JL achieves one-shot with $O(\epsilon^{-1})$ update time.
- [Thorup-Zhang 12] showed that CountSketch (proposed by [Charikar-Chen-Farach-Colton 02]) achieves one-shot with O(1) update time.
- Application: Packet passing problem [Krishnamurthy-Sen-Zhang-Chen 03]

[Thorup-Zhang 12] showed that CountSketch improves AMS sketch from **182** nanoseconds to **30** nanoseconds!

What About Faster Linear Sketch for Weak Tracking?

What About Faster Linear Sketch for Weak Tracking?

Known

- O(1) time for one-shot
- $O(\epsilon^{-2})$ time for weak tracking

What About Faster Linear Sketch for Weak Tracking?

Known

- O(1) time for one-shot
- $O(\epsilon^{-2})$ time for weak tracking

Unknown

• O(1) time for weak tracking

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

$$(\epsilon, \delta)$$
-Weak tracking: Output $\|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2$ s.t. $\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

$$(\epsilon, \delta)$$
-Weak tracking: Output $\|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2$ s.t. $\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right] \right] \leq \delta$

Corollary (informal)

There is an O(1) time algorithm provides $(\epsilon, 0.1)$ -weak tracking.

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

The first analysis for weak tracking with constant update time.

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

- The first analysis for weak tracking with constant update time.
- Using the median trick, there is a streaming algorithm provides (ϵ, δ) -weak tracking with $O(\log \delta^{-1})$ update time.

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

- The first analysis for weak tracking with constant update time.
- Using the median trick, there is a streaming algorithm provides (ϵ, δ) -weak tracking with $O(\log \delta^{-1})$ update time.
- The packet passing problem now has tracking guarantee.

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

- The first analysis for weak tracking with constant update time.
- Using the median trick, there is a streaming algorithm provides (ϵ, δ) -weak tracking with $O(\log \delta^{-1})$ update time.
- The packet passing problem now has tracking guarantee.

The rest of the talk will focus on the proof

Theorem (informal)

CountSketch with $O(\epsilon^{-2})$ rows provides $(\epsilon, 0.1)$ -weak tracking.

- The first analysis for weak tracking with constant update time.
- Using the median trick, there is a streaming algorithm provides (ϵ, δ) -weak tracking with $O(\log \delta^{-1})$ update time.
- The packet passing problem now has tracking guarantee.

The rest of the talk will focus on the proof **sketch**.

CountSketch [Charikar-Chen-Farach-Colton 02]

CountSketch [Charikar-Chen-Farach-Colton 02]

Idea: Exactly one non-zero entry in each column.

CountSketch [Charikar-Chen-Farach-Colton 02]

Idea: Exactly one non-zero entry in each column.

[Thorup-Zhang 12] showed that CountSketch with $O(\epsilon^{-2})$ rows achieve one-shot estimation.

Idea: Exactly one non-zero entry in each column.

[Thorup-Zhang 12] showed that CountSketch with $O(\epsilon^{-2})$ rows achieve one-shot estimation.

• Analysis:

Idea: Exactly one non-zero entry in each column.

[Thorup-Zhang 12] showed that CountSketch with $O(\epsilon^{-2})$ rows achieve one-shot estimation.

Analysis:

- Obs:
$$\mathbb{E}\left[(\Pi^{\top}\Pi)_{ij}\right] = \mathbf{1}_{i=j}$$
 .

Idea: Exactly one non-zero entry in each column.

[Thorup-Zhang 12] showed that CountSketch with $O(\epsilon^{-2})$ rows achieve one-shot estimation.

Analysis:

- Obs:
$$\mathbb{E}\left[(\Pi^{\top}\Pi)_{ij}\right] = \mathbf{1}_{i=j}$$
.

$$- \text{ Obs: } \mathbb{E}\left[(\Pi^\top\Pi)_{ij}\right] = \mathbf{1}_{i=j} \,.$$

$$- \text{ Expectation: } \mathbb{E}\left[\|\Pi f^{(m)}\|_2^2\right] = \mathbb{E}\left[\sum_{i,j\in[n]}(\Pi^\top\Pi)_{ij}f_i^{(m)}f_j^{(m)}\right] = \|f^{(m)}\|_2^2 \,.$$

Idea: Exactly one non-zero entry in each column.

[Thorup-Zhang 12] showed that CountSketch with $O(\epsilon^{-2})$ rows achieve one-shot estimation.

Analysis:

- Obs: $\mathbb{E}\left[(\Pi^{\top}\Pi)_{ij}\right] = \mathbf{1}_{i=j}$.

- Expectation:
$$\mathbb{E}\left[\|\Pi f^{(m)}\|_2^2\right] = \mathbb{E}\left[\sum_{i,j\in[n]}(\Pi^\top\Pi)_{ij}f_i^{(m)}f_j^{(m)}\right] = \|f^{(m)}\|_2^2$$
.
- Apply Chebyshev's inequality.

• First attempt: Apply union bound on one-shot analysis.

• First attempt: Apply union bound on one-shot analysis.

$$\left(\epsilon, \frac{\delta}{m}\right)$$
 -one-shot

First attempt: Apply union bound on one-shot analysis.

$$\left(\epsilon, \frac{\delta}{m}\right)$$
 -one-shot $\left(\epsilon, \delta\right)$ -weak tracking

First attempt: Apply union bound on one-shot analysis.

$$\left(\epsilon, \frac{\delta}{m}\right)$$
 -one-shot $\qquad \qquad (\epsilon, \delta)$ -weak tracking

- Using $O\left(\epsilon^{-2}\delta^{-1}m\right)$ rows (or $O\left(\epsilon^{-2}\delta^{-1}\log m\right)$ rows after median trick).

First attempt: Apply union bound on one-shot analysis.

$$\left(\epsilon, \frac{\delta}{m}\right)$$
 -one-shot $\left(\epsilon, \delta\right)$ -weak tracking

- Using $O\left(\epsilon^{-2}\delta^{-1}m\right)$ rows (or $O\left(\epsilon^{-2}\delta^{-1}\log m\right)$ rows after median trick).
- Idea: Using chaining argument [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff 17] to get a fancier (and tighter) union bound.

First attempt: Apply union bound on one-shot analysis.

$$\left(\epsilon, \frac{\delta}{m}\right)$$
 -one-shot $\left(\epsilon, \delta\right)$ -weak tracking

- Using $O\left(\epsilon^{-2}\delta^{-1}m\right)$ rows (or $O\left(\epsilon^{-2}\delta^{-1}\log m\right)$ rows after median trick).
- Idea: Using chaining argument [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff 17] to get a fancier (and tighter) union bound.

We can get rid of the m dependency!

$$(\epsilon, \delta)$$
-Weak tracking: Output $\|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2$ s.t. $\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$

$$(\epsilon, \delta)\text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

$$\|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 = \boldsymbol{\sigma}^{\top} \tilde{B}_{\eta, f^{(t)}} \boldsymbol{\sigma}$$

$$(\epsilon, \delta) \text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

$$\|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 = \sigma^{\top} \tilde{B}_{\eta, f^{(t)}} \sigma$$

-
$$\sigma \in \{-1,1\}^n$$
 and

$$(\epsilon, \delta) \text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

$$\|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 = \sigma^{\top} \tilde{B}_{\eta, f^{(t)}} \sigma$$

- $\sigma \in \{-1,1\}^n$ and
- $\tilde{B}_{\eta,f^{(t)}}$ depends on Π and $f^{(t)}$.

$$(\epsilon, \delta)\text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

Highly correlated

$$\|\Pi f^{(t)}\|_{2}^{2} - \|f^{(t)}\|_{2}^{2} = \boldsymbol{\sigma}^{\top} \tilde{B}_{\eta, f^{(t)}}^{\mathbf{V}} \boldsymbol{\sigma}$$

- $\sigma \in \{-1,1\}^n$ and
- $\tilde{B}_{\eta,f^{(t)}}$ depends on Π and $f^{(t)}$.

$$(\epsilon, \delta) \text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

Highly correlated

$$\|\Pi f^{(t)}\|_{2}^{2} - \|f^{(t)}\|_{2}^{2} = \boldsymbol{\sigma}^{\top} \tilde{B}_{\eta, f^{(t)}}^{\vee} \boldsymbol{\sigma}$$

- $\sigma \in \{-1,1\}^n$ and
- $\tilde{B}_{\eta,f^{(t)}}$ depends on Π and $f^{(t)}$.
- The bad event becomes:

$$(\epsilon, \delta)\text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

Highly correlated

$$\|\Pi f^{(t)}\|_{2}^{2} - \|f^{(t)}\|_{2}^{2} = \boldsymbol{\sigma}^{\top} \tilde{B}_{\eta, f^{(t)}}^{\vee} \boldsymbol{\sigma}$$

- $\sigma \in \{-1,1\}^n$ and
- $\tilde{B}_{\eta,f^{(t)}}$ depends on Π and $f^{(t)}$.
- The bad event becomes:

$$\sup_{t \in [m]} \left| \sigma^{\top} \tilde{B}_{\eta, f^{(t)}} \sigma \right| > \epsilon \|f^{(m)}\|_{2}^{2}$$

$$(\epsilon, \delta)\text{-Weak tracking: Output } \|\Pi f^{(1)}\|_2^2, \dots, \|\Pi f^{(m)}\|_2^2 \text{ s.t.}$$

$$\Pr\left[\exists_{t \in [m]} \left| \|\Pi f^{(t)}\|_2^2 - \|f^{(t)}\|_2^2 > \epsilon \|f^{(m)}\|_2^2 \right| \right] \leq \delta$$

Rewrite the error as:

Highly correlated

$$\|\Pi f^{(t)}\|_{2}^{2} - \|f^{(t)}\|_{2}^{2} = \boldsymbol{\sigma}^{\top} \tilde{B}_{\eta, f^{(t)}}^{\mathbf{V}} \boldsymbol{\sigma}$$

- $\sigma \in \{-1,1\}^n$ and
- $\tilde{B}_{\eta,f^{(t)}}$ depends on Π and $f^{(t)}$.
- The bad event becomes:

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\sigma^{\top}\tilde{B}_{\eta,f^{(t)}}\sigma\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1.$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1\,.$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\sigma^{\top}\tilde{B}_{\eta,f^{(t)}}\sigma\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1.$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1.$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\sigma^{\top}\tilde{B}_{\eta,f^{(t)}}\sigma\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1\,.$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1\,.$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1\,.$$

- A sequence of nets T_0, T_1, \ldots such that
 - The coarser the net is, the smaller it is.

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1\,.$$

- A sequence of nets T_0, T_1, \ldots such that
 - The coarser the net is, the smaller it is.
- Telescoping $\tilde{B}_{\eta,f^{(t)}}$ using these nets

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1\,.$$

- A sequence of nets T_0, T_1, \ldots such that
 - The coarser the net is, the smaller it is.
- \bullet Telescoping $\tilde{B}_{\pmb{\eta},f^{(t)}}$ using these nets

$$-\sup_{t\in[m]}\gamma\left(\tilde{B}_{\eta,f^{(t)}}\right)\leq \sup_{t\in[m]}\gamma\left(B_{\eta,0}^{(t)}\right)+\sum_{\ell=1}^{\infty}\sup_{t\in[m]}\gamma\left(B_{\eta,\ell}^{(t)}-B_{\eta,\ell-1}^{(t)}\right)$$

Goal:
$$\Pr\left[\sup_{t\in[m]}\left|\sigma^{\top}\tilde{B}_{\eta,f^{(t)}}\sigma\right|>\epsilon\|f^{(m)}\|_{2}^{2}\right]\leq0.1.$$

- A sequence of nets T_0, T_1, \ldots such that
 - The coarser the net is, the smaller it is.
- \bullet Telescoping $\tilde{B}_{\pmb{\eta},f^{(t)}}$ using these nets

$$-\sup_{t\in[m]}\gamma\left(\tilde{B}_{\eta,f^{(t)}}\right)\leq \sup_{T_0}\gamma\left(B_{\eta,0}^{(t)}\right)+\sum_{\ell=1}^{\infty}\sup_{T_\ell}\gamma\left(B_{\eta,\ell}^{(t)}-B_{\eta,\ell-1}^{(t)}\right)$$

$$\Pr\left[\sup_{t\in[m]}\left|\boldsymbol{\sigma}^{\top}\tilde{B}_{\boldsymbol{\eta},f^{(t)}}\boldsymbol{\sigma}\right| > \epsilon \|f^{(m)}\|_{2}^{2}\right] \leq 0.1.$$

- A sequence of nets T_0, T_1, \ldots such that
 - The coarser the net is, the smaller it is.
- Telescoping $\tilde{B}_{\eta,f^{(t)}}$ using these nets

$$-\sup_{t\in[m]}\gamma\left(\tilde{B}_{\eta,f^{(t)}}\right)\leq \sup_{T_0}\gamma\left(B_{\eta,0}^{(t)}\right)+\sum_{\ell=1}^{\infty}\sup_{T_\ell}\gamma\left(B_{\eta,\ell}^{(t)}-B_{\eta,\ell-1}^{(t)}\right)$$

Different from [BCINWW17]

Dudley's inequality.

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?
 - Greedily pick from $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$ and analyze by the insertion-only structure of the input stream.

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?
 - Greedily pick from $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$ and analyze by the insertion-only structure of the input stream.
- How to bound the error magnitude?

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?
 - Greedily pick from $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$ and analyze by the insertion-only structure of the input stream.
- How to bound the error magnitude?
 - Using the Hansen-Wright inequality for the moments of $\sigma^{\top} B \sigma \mathbb{E}[\sigma^{\top} B \sigma]$.

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?
 - Greedily pick from $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$ and analyze by the insertion-only structure of the input stream.
- How to bound the error magnitude?
 - Using the Hansen-Wright inequality for the moments of $\sigma^\top B \sigma \mathbb{E}[\sigma^\top B \sigma].$
- High probability regime?

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?
 - Greedily pick from $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$ and analyze by the insertion-only structure of the input stream.
- How to bound the error magnitude?
 - Using the Hansen-Wright inequality for the moments of $\sigma^\top B \sigma \mathbb{E}[\sigma^\top B \sigma].$
- High probability regime?
 - Median trick.

- Dudley's inequality.
- How to bound the size of ϵ -net for $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$?
 - Greedily pick from $\{\tilde{B}_{\eta,f^{(t)}}\}_{t\in[m]}$ and analyze by the insertion-only structure of the input stream.
- How to bound the error magnitude?
 - Using the Hansen-Wright inequality for the moments of $\sigma^{\top} B \sigma \mathbb{E}[\sigma^{\top} B \sigma]$.
- High probability regime?
 - Median trick.

Ask me offline for more details!

• We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.

- We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.
 - CountSketch and packet passing problem now have tracking guarantee!

- We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.
 - CountSketch and packet passing problem now have tracking guarantee!
- Future directions:

- We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.
 - CountSketch and packet passing problem now have tracking guarantee!
- Future directions:
 - Empirical performance of CountSketch?

- We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.
 - CountSketch and packet passing problem now have tracking guarantee!
- Future directions:
 - Empirical performance of CountSketch?
 - Weak tracking for ℓ_p norm with faster update time?

- We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.
 - CountSketch and packet passing problem now have tracking guarantee!
- Future directions:
 - Empirical performance of CountSketch?
 - Weak tracking for ℓ_p norm with faster update time?
 - Other applications of charing technique?

- We show the first streaming algorithm achieving weak tracking for ℓ_2 estimation with constant update time.
 - CountSketch and packet passing problem now have tracking guarantee!
- Future directions:
 - Empirical performance of CountSketch?
 - Weak tracking for ℓ_p norm with faster update time?
 - Other applications of charing technique?

Thanks for your attention, questions?