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* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.
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 CSP is ubiquitous and has been extremely well-studied!

« Some CSPs are easy and some are hard to solve exactly.

Schaefer’s
Dichotomy Theorem

Boolean CSP is either
P or NP-hard.

 What about solving CSP approximately?
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following.
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* Many fascinating results and open problems!
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 The input (each constraint) arrives in a stream.

—ZTo N\ "xg N\ 19 >

* Only having o(n) or even O(log n) space.
* Observation: Cannot even store an assignment (which requires n bits)!
e «-approximation: Output an integer v such that

* there exists an assignment satisfying v constraints and

e v > o -vale.
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» Trivial random sampling gives 1/2-approximation using O(logn) space.

e Ve > 0, there’s no (1/2+¢€)-approximation streaming algorithm for Max-CUT!
+ [Kapralov-Khanna-Sudan 15]: Q(\/ﬁ) space.
+ [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs (2(n) space.

There’s a SDP-based algorithm
which gives 0.878-approx.

+ [Kapralov-Krachun 19]: Q(n) Space.




Max-DICUT in the Streaming Model

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

> # edges

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).

* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).

* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

I — I

0 1/4 2/51/2 1

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).
* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

 What'’s the “right approximation ratio”?

I — I

0 1/4 2/51/2 1

10



Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).
* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

 What'’s the “right approximation ratio”?
 What about other CSP?

I — I

0 1/4 2/51/2 1

10



Our Results

11



Our Results
4/9

. ) . £ | | 1
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

11



Our Results
4/9

' 63 | |
The answer of Max-DICUT is 4/9 & o 1/a  92/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

11



Our Results
4/9

. £ | |
The answer of Max-DICUT is 4/9 & o 1/a  92/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

11



Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

For any boolean 2CSP of type A, there

exist ax, A € (0, 1|such that Ve > 0,

11



Our Results
4/9

| | | | |
. ) . £ | | 1
The answer of Max-DICUT is 4/9 & o 1/a  92/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

For any boolean 2CSP of type A, there
exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and

11



Our Results
4/9

| | H
| | 1

0 1/4 2/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

e The answer of Max-DICUT is 4/9 &

Theorem (main).

For any boolean 2CSP of type A, there
exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11



Our Results
4/9

| | H
| | 1

0 1/4 2/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

e The answer of Max-DICUT is 4/9 &

Theorem (main). A oA | TA | Reference

For any boolean 2CSP of type A, there
exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11



Our Results
4/9

| | H
| | 1

0 1/4 2/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

e The answer of Max-DICUT is 4/9 &

Theorem (main). A oA | TA | Reference

1 (KK19]

For any boolean 2CSP of type A, there XOR %

exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11



Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND g % e work

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11



Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND 4 L
. . 9 2
() there’s a(an — €)-approx. in O(logn)
3 1 .
space and EOR 1 5 This work

(i) no (ap + €)-approx. in Q(n™)

11



Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND 4 L
. . 9 2
() there’s a(an — €)-approx. in O(logn)
3 1 .

space and EOR 1 5 This work

(i) no (ap + €)-approx. in Q(n™) OR g % This work

11



Our Results
4/9

| | | | | |
o _ : £33 | | | | |
The answer of Max-DICUT is 4/9 ¢ o 174 9/51/5 3

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND 4 L
. . 9 2
() there’s a(an — €)-approx. in O(logn)
q FoR 2 1 This work
space an 4 2
J2 o1

(i) no (ap + €)-approx. in Q(n™ ) |
2 2

Can be extended to Max k-SAT!
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Total bias B can be estimated In
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* Blue line (cut value upper bound):
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 Red line: The cut value of greedy cut.
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Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

* Blue line (cut value upper bound):

Small bias => = O

 Red line: The cut value of greedy cut.

Range of cut value

[Cannot happen!} * Streaming algorithm: Estimate B and

output the red line.
o PP T——— e Ratio: When B = 1/2, the ratio is 2/5.
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* By optimizing the choice of 0 and analyzing the expected cut value, we have

# edges B> 2
> | 2
4 16(# edges — B) when 50, 3

 Blue line: cut value upper bound.
 Red line: The cut value of greedy cut.

 Green line: Cut value achieved by
random sampling with bias.
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* By optimizing the choice of 0 and analyzing the expected cut value, we have

# edges B> 2
> | 2
4 16(# edges — B) when 50, 3

 Blue line: cut value upper bound.
 Red line: The cut value of greedy cut.

 Green line: Cut value achieved by
random sampling with bias.

f cut value

Range o

[Ca"““ “appe"’}  Streaming algorithm: Estimate B and
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Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference
2XOR 1 1 Trivial
> > rivia
3 '3
3 3 . .
2EOR 1 1 Trivial
2AND 4 _g 1_ =] d I
S B iased sampling
-
20R g 5’ 1 Biased sampling

e See our paper for more details!
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Random Sampling’s Bounds
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 Unconditional lower bounds from communication games.
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Communication
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* High-level idea:

—

ﬁ
—
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 Usage: Alice and Bob insert some inputs to the streaming algorithm and

send the “configuration” as the message.
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Streaming Lower Bounds via Communication Complexity

 Unconditional lower bounds from communication games.

>

| | Communication
Streaming Algorithm Protocol

* High-level idea:

—

ﬁ
—
—_—

 Usage: Alice and Bob insert some inputs to the streaming algorithm and

send the “configuration” as the message.

e Space complexity of streaming algorithm >= communication complexity.
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* No distribution: w; is uniformly random V¢ € |T'].
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Distributional Boolean Hidden Partition (DBHP) Problem W
two 1s.

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

c bits > Yes

— =
)

* Yes distribution: Exists X* € {0, 1}"such that w; = M, X™, Vt € |T].

* No distribution: w; is uniformly random Vit € |T].
* [Gavinsky et al. 07] showed that DBHP needs Q(1/n) communication.

* Parallel repetition: constant many copies to increase the number of edges.
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Example of DBHP (with Parallel Repetition)

 Can you see this is a Yes case or No case”?
- The answer is Yes. The hidden partitionis X* =001 0 1] .

 Can you see the connection to Max-CUT?

21



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT




Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT

22



Reducing DBHP to Max-CUT




Reducing DBHP to Max-CUT




Reducing DBHP to Max-CUT




How to Use DBHP? A Graph View

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution
39X s.t. wp = M X

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

 Each player possesses a subset of the edges.

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution Yes’ Distribution

4X* s.t. wy = M X7 w; is uniformly random

 Each player possesses a subset of the edges.

23



How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution

X" st wy =MX"

No Distribution

wy 1s uniformly random

 Each player possesses a subset of the edges.

23

Yes’ Distribution
X st wp=1—MX"




How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution

X" st wy =MX"

No Distribution

wy 1s uniformly random

 Each player possesses a subset of the edges.

23

Yes’ Distribution
X st wp=1—MX"




Reducing DBHP to Max-CUT

24



Reducing DBHP to Max-CUT

Bob 1 Bob 2
{ o] { o]

24

Bob T
{ o]




Reducing DBHP to Max-CUT

Bob 1 Bob 2 Bob T
{ o] e | 7 | {e%}

i'/.j
!

24



Reducing DBHP to Max-CUT

Bob 1 Bob 2

i'/.j
!

24




Reducing DBHP to Max-CUT

Bob 1 Bob 2

24



Reducing DBHP to Max-CUT

24



Reducing DBHP to Max-CUT

24



Reducing DBHP to Max-CUT




Reducing DBHP to Max-CUT

Yes



Reduci
ucing DBHP to Max-C
x-CUT




Boolean 2CSP

A Reference
2XOR Trivial
2EOR Trivial

Biased sampling



Reducing DBHP to Max-DICUT (Max-2AND)

20



Reducing DBHP to Max-DICUT (Max-2AND)

20



Reducing DBHP to Max-DICUT (Max-2AND)

20



Reducing DBHP to Max-DICUT (Max-2AND)

20



Reducing DBHP to Max-DICUT (Max-2AND)

20



Reducing DBHP to Max-DICUT (Max-2AND)




Reducing DBHP to Max-DICUT (Max-2AND)




Reducing DBHP to Max-DICUT (Max-2AND)

Yes




Reducing DBHP to Max-DICUT (Max-2AND)




Reducing DBHP to Max-DICUT (Max-2AND)

e
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© ca"
>
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. .
O .| Ratio Yes
% = 4/9
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Summary of the DBHP Technique

o Step 1: Identify the gap instances for Max-CSP of type A.

* Step 2: Connect one of the three distributions of DBHP to the gap instances.

Yes Distribution No Distribution Yes’ Distribution
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Conclusion

Theorem A o) | TA | Reference
For any boolean 2CSP of .
| XOR - 1 [KK19]
type A, there exist &, Ta 2
4 1 .
such that Ve > 0, AND 5 5 | This work
(i) there’s a(an — €)-approx. FOR Z % This work
in O(logn) space and
( 5 ) P OR g % This work

(i) no (s + €)-approx. in

TA
(n"™) space. Local random sampling is optimal!
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* (Mid term) Investigate boolean Max-CSP with larger arity.
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Thanks for your attention, questions?

31



Reducing DBHP to Max-2EOR

.Iﬂl‘ Bob 2 Bob T > Yes
{i j} {z./‘]} {Z‘/‘J & No

32



Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T - Yes
{o—%} | 7 | {o—%} |
L3 \/ij
L4 V Ly

32



Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T _p Yes
{z./‘]} {z‘/‘]} {Z‘/‘J & No
L \% L 4

e, \ _laij

32



Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T - Yes
(o=} | | {e—=3 ] = | {o—=} |
L \/xj
e, \% &y

32



Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T - Yes
(o=} | = | {2} >
L4 \/iEj
—X; V &y

32



Reducing DBHP to Max-2EOR

32



Reducing DBHP to Max-2EOR




Reducing DBHP to Max-2EOR




Reducing DBHP to Max-2EOR

Bob 1 Bob 2




Max-20R

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [CE‘] — 1/2, 2-clause: It [QE V y] — 3/4 '

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @

* Biased sampling:

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:

+ Random sample with the biases of 1-clause and 2-clause.

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &
 Gap instances:

33



Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [ZE’] — 1/2, 2-clause: It [ZU V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &
 Gap instances:




Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [ZE’] — 1/2, 2-clause: It [ZU V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &
 Gap instances:




Reducing DBHP to Max-20R

34



Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X* { «—9;} { o—%}

34



Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X {oe—%} | 7 | {o—%}

34



Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X {oe—%} | 7 | {o—%}

ZEi\/ZEj

(7)) V (—5)

34



Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X {oe—%} | 7 | {o—%}
L \ L 5

34



Reducing DBHP to Max-20R

34



Reducing DBHP to Max-20R




Reducing DBHP to Max-20R

Yes




Reducing DBHP to Max-20R




