Optimal Streaming Approximations
for all Boolean Max 2-CSPs and Max k-SAT

Chi-Ning Chou Sasha Golonev Santhoshini Velusamy

Harvard University

FOCS 2020

1

Motivation and Spoiler

Motivation and Spoiler

* (Constraint satisfaction problem (CSP) in the streaming model.

Motivation and Spoiler

* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.

Motivation and Spoiler

* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.

Motivation and Spoiler

* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o‘/‘ >

Motivation and Spoiler

* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o‘/‘ >

* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.

Motivation and Spoiler I ————————————————

0 1/4 1
* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o‘/‘ >

* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.

Motivation and Spoiler I]

0 1/4 2/5 1
* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o‘/‘ >

* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.

Motivation and Spoiler I E—— |

0 1/4 2/51/2 1
* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o‘/‘ >

* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.

4/9
| |

Motivation and Spoiler | — |
0 1/4 2/51/2 1

* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o/‘ >

* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.

* \We show that 4/9-approximation is the right answer!

4/9

Motivation and Spoiler I — |
0 1/4 2/51/2 1

* (Constraint satisfaction problem (CSP) in the streaming model.

+ CSP is one of the central computational problems in complexity theory.
+ Proving unconditional hardness in streaming model is more doable.
* Motivating example: Max-DICUT.

o‘/‘ >

* Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed

2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.
* \We show that 4/9-approximation is the right answer!

* Further, we characterize the approximation ratio of every boolean 2-CSP!

2

Definitions

Constraint Satisfaction Problem (CSP)

Constraint Satisfaction Problem (CSP)

 Variables: 1,Z2,...,Zy, taking values in }..

Constraint Satisfaction Problem (CSP)

 Variables: 1,Z2,...,Zy, taking values in }..
« Constraints: (f,S) where f : ¥ — {0,1} and S C [n].

Constraint Satisfaction Problem (CSP)

 Variables: 1,Z2,...,Zy, taking values in }..
« Constraints: (f,S) where f : ¥ — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,S) where f : ¥ — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,S) where f : ¥ — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,S) where f : ¥ — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define vale = max [{(f,S) €C: f(o(zg)) =1} € |0,m].

o:[n|—X

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,S) where f : ¥ — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define vale = max_|{(f,S) € C: f(o(zs)) =1}| € [0,m].

o:n|—X

Restriction of the variables

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,5) where f : ©* — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define vale = max_|{(f,S) € C: f(o(xs)) = 1}| € [0, 1],

o:[n|—X

Max-CUT as a CSP

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,5) where f : ©* — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define valg = max {(f,S)eC: f(o(xs)) =1} € [0,m].

o:[n|—X

Max-CUT as a CSP
An undirected graph G.

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,5) where f : ©* — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define valg = max {(f,S)eC: f(o(xs)) =1} € [0,m].

o:[n|—X

Max-CUT as a CSP
An undirected graph G.

e Variables: z;, =1 &< 1€/

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,5) where f : ©* — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define valg = max {(f,S)eC: f(o(xs)) =1} € [0,m].

o:[n|—X

Max-CUT as a CSP
An undirected graph G.

* Variables: z; =1 1€/
* Constraints: (i,j) c E & x;, x; €C

Constraint Satisfaction Problem (CSP)

e Variables: 1,2, ..., Xy, taking values in 3.

« Constraints: (f,5) where f : ©* — {0,1} and S C [n].
Example: f(-,-) =-A-and S = {3,8},read as x3 N x3.

 Input: C = {(f,S)}, number of constraints =

* Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define valg = max {(f,S)eC: f(o(xs)) =1} € [0,m].

o:[n|—X

Max-CUT as a CSP
An undirected graph G.

e Variables: z;, =1 &< 1€/

i * Constraints: (i,j) e E & x;®zx; €C
7 ¢ Value: vale = max cut value

4

Constraint Satisfaction Problem (CSP)

Constraint Satisfaction Problem (CSP)

 CSP is ubiquitous and has been extremely well-studied!

Constraint Satisfaction Problem (CSP)

 CSP is ubiquitous and has been extremely well-studied!

« Some CSPs are easy and some are hard to solve exactly.

Constraint Satisfaction Problem (CSP)

 CSP is ubiquitous and has been extremely well-studied!

« Some CSPs are easy and some are hard to solve exactly.

- —= ————

~
N «

N P_hard : \\‘\\:

N \
\\
N

Schaefer’s
Dichotomy Theorem

Boolean CSP is either ‘LP‘\\\O SLin

P or NP-hard.

Constraint Satisfaction Problem (CSP)

 CSP is ubiquitous and has been extremely well-studied!

« Some CSPs are easy and some are hard to solve exactly.

Schaefer’s
Dichotomy Theorem

Boolean CSP is either
P or NP-hard.

 What about solving CSP approximately?

- -

A

- —= ————

NP-hard

SLiN

S

N «

[I)‘
.=

Approximating CSP

Approximating CSP

* Approximation <=> Distinguishing instances with different values.

Approximating CSP

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.

Approximating CSP

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

Approximating CSP

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @ = 1 — €, Ve > 0: fully approximation.

Approximating CSP

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @ = 1 — €, Ve > 0: fully approximation.

* Algorithmic side: Random sampling, SDP-based algorithms.

Approximating CSP

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.

 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximating CSP Max-CUT: |

0

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.

 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximating CSP Max-CUT: EE——

0 1/2 1

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.

 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximating CSP Max-CUT: | —

0 1/2 0.878 1

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.

 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximating CSP Max-CUT: | —

0 1/2 0.878 0.941 1

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.

 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximating CSP Max-CUT: | I 1

0 1/2 0.878 0.941 1

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.

 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximating CSP Max-CUT: | I 1

0 1/2 0.878 0.941 1

* Approximation <=> Distinguishing instances with different values.

a-approximation: Let o € (0, 1]. For any v € (0, m|, can distinguish the

following.
Yes: vale > v No: val < o - v

e o = 1:the exact version; @« = 1 — €, Ve > 0: fully approximation.
* Algorithmic side: Random sampling, SDP-based algorithms.
 Hardness side: NP-hardness or UG-hardness (through PCP theorem).

* Many fascinating results and open problems!

0

Unifying Theory for Approx. CSP!?

Unifying Theory for Approx. CSP!?

Through the Lens of Streaming Model

CSP in the Streaming Model

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

331/\376/_'374 >

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

5 N\ Ty N\ 7T23 >

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

L9 N\ L7 N\ —L11 >

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

—x7 N\ X115 N\ D31 >

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

— Lo N\ xg N\ 19 >

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

—ZTo N\ "xg N\ 19 >

* Only having o(n) or even O(logn) space.

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

—ZTo N\ "xg N\ 19 >

* Only having o(n) or even O(logn) space.

* Observation: Cannot even store an assignment (which requires n bits)!

CSP in the Streaming Model

The input (each constraint) arrives in a stream.

—ZTo N\ "xg N\ 19 >

Only having o(n) or even O(logn) space.
Observation: Cannot even store an assignment (which requires n bits)!

o -approximation: Output an integer v such that

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

—ZTo N\ "xg N\ 19 >

* Only having o(n) or even O(log n) space.
* Observation: Cannot even store an assignment (which requires n bits)!
e «-approximation: Output an integer v such that

* there exists an assignment satisfying v constraints and

CSP in the Streaming Model

 The input (each constraint) arrives in a stream.

—ZTo N\ "xg N\ 19 >

* Only having o(n) or even O(log n) space.
* Observation: Cannot even store an assignment (which requires n bits)!
e «-approximation: Output an integer v such that

* there exists an assignment satisfying v constraints and

e v > o -vale.

Trivial Random Sampling is Optimal for Max-CUT!

Trivial Random Sampling is Optimal for Max-CUT!

» Trivial random sampling gives 1/2-approximation using O(logn) space.

Trivial Random Sampling is Optimal for Max-CUT!

» Trivial random sampling gives 1/2-approximation using O(logn) space.

> # edges

e Ve > 0, there’s no (1/2+¢€)-approximation streaming algorithm for Max-CUT!

Trivial Random Sampling is Optimal for Max-CUT!

» Trivial random sampling gives 1/2-approximation using O(logn) space.

> # edges

e Ve > 0, there’s no (1/2+¢€)-approximation streaming algorithm for Max-CUT!

+ [Kapralov-Khanna-Sudan 15]: Q(\/ﬁ) space.

Trivial Random Sampling is Optimal for Max-CUT!

» Trivial random sampling gives 1/2-approximation using O(logn) space.

e Ve > 0, there’s no (1/2+¢€)-approximation streaming algorithm for Max-CUT!
+ [Kapralov-Khanna-Sudan 15]: Q(\/ﬁ) space.

+ [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs (2(n) space.

Trivial Random Sampling is Optimal for Max-CUT!

» Trivial random sampling gives 1/2-approximation using O(logn) space.

e Ve > 0, there’s no (1/2+¢€)-approximation streaming algorithm for Max-CUT!
+ [Kapralov-Khanna-Sudan 15]: Q(\/ﬁ) space.
+ [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs (2(n) space.

+ [Kapralov-Krachun 19]: Q(n) Space.

Trivial Random Sampling is Optimal for Max-CUT!

» Trivial random sampling gives 1/2-approximation using O(logn) space.

e Ve > 0, there’s no (1/2+¢€)-approximation streaming algorithm for Max-CUT!
+ [Kapralov-Khanna-Sudan 15]: Q(\/ﬁ) space.
+ [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs (2(n) space.

There’s a SDP-based algorithm
which gives 0.878-approx.

+ [Kapralov-Krachun 19]: Q(n) Space.

Max-DICUT in the Streaming Model

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

> # edges

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).

* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).

* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

I — I

0 1/4 2/51/2 1

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).
* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

 What'’s the “right approximation ratio”?

I — I

0 1/4 2/51/2 1

10

Max-DICUT in the Streaming Model

e Trivial random sampling now gives 1/4-approximation using O(logn) space.

edges
> 7 4g

* Hardness side: no (1/2+¢)-approximation using o(n) space (from Max-CUT).
* Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

 What'’s the “right approximation ratio”?
 What about other CSP?

I — I

0 1/4 2/51/2 1

10

Our Results

11

Our Results
4/9

.) . £ | | 1
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

11

Our Results
4/9

' 63 | |
The answer of Max-DICUT is 4/9 & o 1/a 92/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

11

Our Results
4/9

. £ | |
The answer of Max-DICUT is 4/9 & o 1/a 92/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

11

Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

For any boolean 2CSP of type A, there

exist ax, A € (0, 1|such that Ve > 0,

11

Our Results
4/9

| | | | |
.) . £ | | 1
The answer of Max-DICUT is 4/9 & o 1/a 92/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

For any boolean 2CSP of type A, there
exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and

11

Our Results
4/9

| | H
| | 1

0 1/4 2/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

e The answer of Max-DICUT is 4/9 &

Theorem (main).

For any boolean 2CSP of type A, there
exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11

Our Results
4/9

| | H
| | 1

0 1/4 2/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

e The answer of Max-DICUT is 4/9 &

Theorem (main). A oA | TA | Reference

For any boolean 2CSP of type A, there
exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11

Our Results
4/9

| | H
| | 1

0 1/4 2/51/2

* Further, we characterize the approximation ratio of every boolean 2CSP!

e The answer of Max-DICUT is 4/9 &

Theorem (main). A oA | TA | Reference

1 (KK19]

For any boolean 2CSP of type A, there XOR %

exist ax, A € (0, 1|such that Ve > 0,

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11

Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND g % e work

() there’s a(an — €)-approx. in O(logn)
space and
(i) no (ap + €)-approx. in Q(n™)

11

Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND 4 L
. . 9 2
() there’s a(an — €)-approx. in O(logn)
3 1 .
space and EOR 1 5 This work

(i) no (ap + €)-approx. in Q(n™)

11

Our Results
4/9

| | | | |
. £ | | T
The answer of Max-DICUT is 4/9 & 0 14 2/51/9

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND 4 L
. . 9 2
() there’s a(an — €)-approx. in O(logn)
3 1 .

space and EOR 1 5 This work

(i) no (ap + €)-approx. in Q(n™) OR g % This work

11

Our Results
4/9

| | | | | |
o _ : £33 | | | | |
The answer of Max-DICUT is 4/9 ¢ o 174 9/51/5 3

* Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main). A Q| TA | Reference
For any boolean 2CSP of type A, there XOR % 1 [KK19]
exist ax, A € (0, 1|such that Ve > 0, AND 4 L
. . 9 2
() there’s a(an — €)-approx. in O(logn)
q FoR 2 1 This work
space an 4 2
J2 o1

(i) no (ap + €)-approx. in Q(n™) |
2 2

Can be extended to Max k-SAT!

11

Algorithms

Algorithms

with a focus on Max-DICUT

Warm-up: 2/5-Approximation by [GVV17]

13

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

I —

0 1/4 1/2

13

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

* ldea: Consider the bias of each vertex. ‘ \

|
0 1/4 1/2

13

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

* ldea: Consider the bias of each vertex. ‘ \

Definition (bias and total bias):

13

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

* ldea: Consider the bias of each vertex. ‘ \

Definition (bias and total bias):

e bias(v) = in-degree — out-degree

13

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

* ldea: Consider the bias of each vertex. ‘ \

Definition (bias and total bias):

e bias(v) = in-degree — out-degree

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

* ldea: Consider the bias of each vertex. ‘ \

Definition (bias and total bias):

e bias(v) = in-degree — out-degree

* Jotal bias: b = Z|buas)€ 10,21

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

 Idea: Consider the bias of each vertex. | ‘ \ |

Definition (bias and total bias):

e bias(v) = in-degree — out-degree

Total bias B can be estimated In
* Jotal bias: B = Z bias(v)|€ |0, 2] O(logn) space!

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

 Idea: Consider the bias of each vertex. | ‘ \ |

Definition (bias and total bias):

e bias(v) = in-degree — out-degree

Total bias B can be estimated In
* Jotal bias: B = Z bias(v)|€ |0, 2] O(logn) space!

 Can you see why?

Warm-up: 2/5-Approximation by [GVV17]

* Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

 Idea: Consider the bias of each vertex. | ‘ \ |

Definition (bias and total bias):

e bias(v) = in-degree — out-degree

Total bias B can be estimated In
* Jotal bias: B = Z bias(v)|€ |0, 2] O(logn) space!

 Can you see why?

 Understand the relation
between B and val could
give approximation.

Relation Between Total Bias and Cut Value

Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

14

Relation Between Total Bias and Cut Value

Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

Range of cut value

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

14

Relation Between Total Bias and Cut Value

Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

) Cont * Blue line (cut value upper bound):
= 0.8} x aP

— “(\0 . —

S e Small bias => = O

"5 0.6

O

8 0.4r

o)

-

§ 0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

14

Relation Between Total Bias and Cut Value

Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

1
., cont * Blue line (cut value upper bound):

= 0.8} x aP

— “(\0 . —

s \& Small bias => = O

8 0.6 -

Yo * Red line: The cut value of greedy cut.
O 0.4

8’ {Cannot happen!}

g 0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

14

Relation Between Total Bias and Cut Value

Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

* Blue line (cut value upper bound):

Small bias => = O

 Red line: The cut value of greedy cut.

Range of cut value

[Cannot happen!} * Streaming algorithm: Estimate B and

output the red line.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

14

Relation Between Total Bias and Cut Value - |

0 1/4 2/51/2 1

Definition (bias and total bias):
bias(v) = in-degree — out-degree and B = Z bias(v)|

* Blue line (cut value upper bound):

Small bias => = O

 Red line: The cut value of greedy cut.

Range of cut value

[Cannot happen!} * Streaming algorithm: Estimate B and

output the red line.
o PP T——— e Ratio: When B = 1/2, the ratio is 2/5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Total bias B

14

New ldea: Random Sampling

15

New ldea: Random Sampling with Bias

15

New ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

15

New ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

Range of cut value
o o o o

|||||||||

15

New ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

15

Range of cut value
o o o o

New ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because
() there’s a graph with optimal cut value #edges and

(i) there’s a graph with optimal cut value #edges/4.

15

Range of cut value
o o o o

New ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value
o o o o

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

15

New |ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value
o o o o

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

 Random sampling with bias: Let 0 be a const. chosen later. For each 7,

15

New |ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value
o o o o

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

 Random sampling with bias: Let 0 be a const. chosen later. For each 7,

15

New |ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value
o o o o

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

 Random sampling with bias: Let 0 be a const. chosen later. For each 7,

. . oo .
- In-going set with probability 5 0 - sgn (blaS(C Z))

® .
[/

15

New |ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value
o o o o

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

 Random sampling with bias: Let 0 be a const. chosen later. For each 7,

. . oo .
- In-going set with probability 5 0 - sgn (blaS(C Z))

® .
[/

- Out-going set with probability % — 0 - sgn (bias(' Z))

15

New |ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

 Random sampling with bias: Let 0 be a const. chosen later. For each 7,

1 .
W |n-going set with probability 5 0 - sgn (b|as(0 Z)) 0 = () recovers trivial

o random sampling.

()
- Out-going set with probability % — 0 - sgn (bias(' Z))

15

New |ldea: Random Sampling with Bias

* Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

* Observation: This is tight for random sampling because

() there’s a graph with optimal cut value #edges and

Range of cut value
o o o o

(i) there’s a graph with optimal cut value #edges/4.

* However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

 Random sampling with bias: Let 0 be a const. chosen later. For each 7,

1 .
W |n-going set with probability 5 0 - sgn (blaS(C Z)) 0 = () recovers trivial
random sampling.

| | I | .
- Out-going set with probability 5~ 0 - sgn (blas(C Z))) — 1/2 gets [GVV17].

® .
[/

15

New Relation Between Total Bias and Cut Value

16

New Relation Between Total Bias and Cut Value

* By optimizing the choice of 0 and analyzing the expected cut value, we have

10

New Relation Between Total Bias and Cut Value

* By optimizing the choice of 0 and analyzing the expected cut value, we have

edges B> 2
> ; “
4 16(# edges — B) when 50, 3

10

New Relation Between Total Bias and Cut Value

* By optimizing the choice of 0 and analyzing the expected cut value, we have

edges B> 2
ale > | B —

© = 4 16(# edges — B) when = _O’ 3
i Blue line: cut value upper bound.
§ a Red line: The cut value of greedy cut.
% 0.4
8’ [Cannot happen!}
I% 0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

10

New Relation Between Total Bias and Cut Value

* By optimizing the choice of 0 and analyzing the expected cut value, we have

edges B? 92

ale 2 — I 16(# odges — B) when B € _(), 3
., | * Blue line: cut value upper bound.
§ " Red line: The cut value of greedy cut.
3% e Green line: Cut value achieved by
S .l random sampling with bias.
g [Cannot happen!}
oC 02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

10

New Relation Between Total Bias and Cut Value

* By optimizing the choice of 0 and analyzing the expected cut value, we have

edges B> 2
> | 2
4 16(# edges — B) when 50, 3

 Blue line: cut value upper bound.
 Red line: The cut value of greedy cut.

 Green line: Cut value achieved by
random sampling with bias.

f cut value

Range o

[Ca"““ “appe"’} Streaming algorithm: Estimate B and

output max {green line, red line}.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Total bias B

10

4/9

New Relation Between Total Bias and Cut Value | - |

0 1/4 2/51/2 1

* By optimizing the choice of 0 and analyzing the expected cut value, we have

edges B> 2
> | 2
4 16(# edges — B) when 50, 3

 Blue line: cut value upper bound.
 Red line: The cut value of greedy cut.

 Green line: Cut value achieved by
random sampling with bias.

f cut value

Range o

[Ca"““ “appe"’} Streaming algorithm: Estimate B and

output max {green line, red line}.

0 02 04 06 08 1 12 14 16 18 2 e Ratio: When B :2/5, the ratio is 4/9.
Total bias B

10

Local Random Sampling is Optimal in Streaming Model

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference

2X0OR Trivial

1 1
2 2

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference
2X0OR 1 1 Trivial
> > rivia
3 '3
3 3, o
2EOR 1 _ 1 _ Trivial

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference
2XOR 1 1 Trivial
> > rivia
3 '3
3 3, .
2EOR 1 i Trivial
2AND 4 g 1 =] d I
9 52 iased sampling

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference
2XOR 1 1 Trivial
> > rivia
3 '3
3 3 . .
2EOR 1 1 Trivial
2AND 4 _g 1_ =] d I
S B iased sampling
-
20R g 5’ 1 Biased sampling

17

Local Random Sampling is Optimal in Streaming Model

* [t turns out that the optimal approx. ratio of all the boolean 2CSP can be
achieved by local random sampling analysis.

A QLA Previous Reference
2XOR 1 1 Trivial
> > rivia
3 '3
3 3 . .
2EOR 1 1 Trivial
2AND 4 _g 1_ =] d I
S B iased sampling
-
20R g 5’ 1 Biased sampling

e See our paper for more details!

17

Hardness

Hardness

Find Instances Matching
Random Sampling’s Bounds

18

Streaming Lower Bounds via Communication Complexity

19

Streaming Lower Bounds via Communication Complexity

 Unconditional lower bounds from communication games.

19

Streaming Lower Bounds via Communication Complexity

 Unconditional lower bounds from communication games.

* High-level idea:

19

Streaming Lower Bounds via Communication Complexity

 Unconditional lower bounds from communication games.

>

| | Communication
Streaming Algorithm Protocol

* High-level idea:

”
—
—_—

—

19

Streaming Lower Bounds via Communication Complexity

 Unconditional lower bounds from communication games.

>

Communication
Protocol

* High-level idea:

—

ﬁ
—
—_—

Streaming Algorithm

 Usage: Alice and Bob insert some inputs to the streaming algorithm and

send the “configuration” as the message.

19

Streaming Lower Bounds via Communication Complexity

 Unconditional lower bounds from communication games.

>

| | Communication
Streaming Algorithm Protocol

* High-level idea:

—

ﬁ
—
—_—

 Usage: Alice and Bob insert some inputs to the streaming algorithm and

send the “configuration” as the message.

e Space complexity of streaming algorithm >= communication complexity.

19

Distributional Boolean Hidden Partition (DBHP) Problem

20

Distributional Boolean Hidden Partition (DBHP) Problem

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

20

Distributional Boolean Hidden Partition (DBHP) Problem

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

20

two 1s.

Distributional Boolean Hidden Partition (DBHP) Problem W

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

Bob

c bits
W E {O, 1}O.Oln

M € {07 1}O.Oln><n

20

Distributional Boolean Hidden Partition (DBHP) Problem W
two 1s.

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

Bob

c bits

M € {07 1}O.Oln><n

20

two 1s.

Distributional Boolean Hidden Partition (DBHP) Problem W

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

Bob

c bits
W E {O, 1}O.Oln

* Yes distribution: Exists X* € {0, 1}"such that w; = M, X™, Vt € |T].

20

two 1s.

Distributional Boolean Hidden Partition (DBHP) Problem W

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

Bob

c bits
W E {O, 1}O.Oln

* Yes distribution: Exists X* € {0, 1}"such that w; = M, X™, Vt € |T].

* No distribution: w; is uniformly random V¢ € |T'].

20

Distributional Boolean Hidden Partition (DBHP) Problem W
two 1s.

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

» Yes distribution: Exists X™ € {0,1}"such that w; = M, X™, Vt € |[T].
* No distribution: w; is uniformly random V¢ € |T'].

* [Gavinsky et al. 07] showed that DBHP needs Q(1/n) communication.

20

Distributional Boolean Hidden Partition (DBHP) Problem W
two 1s.

* Used by [Kapralov-Khanna-Sudan-15] In proving hardness of Max-Cut.

c bits > Yes

— =
)

* Yes distribution: Exists X* € {0, 1}"such that w; = M, X™, Vt € |T].

* No distribution: w; is uniformly random Vit € |T].
* [Gavinsky et al. 07] showed that DBHP needs Q(1/n) communication.

* Parallel repetition: constant many copies to increase the number of edges.

20

Example of DBHP (with Parallel Repetition)

21

Example of DBHP (with Parallel Repetition)

21

Example of DBHP (with Parallel Repetition)

 Can you see this is a Yes case or No case”?

* Yes distribution: Exists X* € {0,1}"such that w, = M; X", Vt € |[T|.
* No distribution: wy is uniformly random Vit € |T'].

21

Example of DBHP (with Parallel Repetition)

 Can you see this is a Yes case or No case”?

- The answer is Yes. The hidden partitionis X* =001 0 1] .

21

Example of DBHP (with Parallel Repetition)

 Can you see this is a Yes case or No case”?
- The answer is Yes. The hidden partitionis X* =001 0 1] .

 Can you see the connection to Max-CUT?

21

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

22

Reducing DBHP to Max-CUT

Reducing DBHP to Max-CUT

Reducing DBHP to Max-CUT

How to Use DBHP? A Graph View

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution
39X s.t. wp = M X

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution

3X* s.t. wy = M X7 w; is uniformly random

 Each player possesses a subset of the edges.

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution No Distribution Yes’ Distribution

4X* s.t. wy = M X7 w; is uniformly random

 Each player possesses a subset of the edges.

23

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution

X" st wy =MX"

No Distribution

wy 1s uniformly random

 Each player possesses a subset of the edges.

23

Yes’ Distribution
X st wp=1—MX"

How to Use DBHP? A Graph View

* Think of each row of M; as a random edge and w; picks the edges.

Yes Distribution

X" st wy =MX"

No Distribution

wy 1s uniformly random

 Each player possesses a subset of the edges.

23

Yes’ Distribution
X st wp=1—MX"

Reducing DBHP to Max-CUT

24

Reducing DBHP to Max-CUT

Bob 1 Bob 2
{ o] { o]

24

Bob T
{ o]

Reducing DBHP to Max-CUT

Bob 1 Bob 2 Bob T
{ o] e | 7 | {e%}

i'/.j
!

24

Reducing DBHP to Max-CUT

Bob 1 Bob 2

i'/.j
!

24

Reducing DBHP to Max-CUT

Bob 1 Bob 2

24

Reducing DBHP to Max-CUT

24

Reducing DBHP to Max-CUT

24

Reducing DBHP to Max-CUT

Reducing DBHP to Max-CUT

Yes

Reduci
ucing DBHP to Max-C
x-CUT

Boolean 2CSP

A Reference
2XOR Trivial
2EOR Trivial

Biased sampling

Reducing DBHP to Max-DICUT (Max-2AND)

20

Reducing DBHP to Max-DICUT (Max-2AND)

20

Reducing DBHP to Max-DICUT (Max-2AND)

20

Reducing DBHP to Max-DICUT (Max-2AND)

20

Reducing DBHP to Max-DICUT (Max-2AND)

20

Reducing DBHP to Max-DICUT (Max-2AND)

Reducing DBHP to Max-DICUT (Max-2AND)

Reducing DBHP to Max-DICUT (Max-2AND)

Yes

Reducing DBHP to Max-DICUT (Max-2AND)

Reducing DBHP to Max-DICUT (Max-2AND)

e
B os “ot“app
© ca"
>
"5 0.6
O
. .
O .| Ratio Yes
% = 4/9
C A {Cannot ha en!]
S 5 = No
0 | | | | | | | | |
0 02 04 06 0.8 1 12 14 16 1.8 2
Total bias B

vaICZ(l—O(l))(Q : f) valc<(1—|—0(1))(4 :

20

Boolean 2CSP

A QLA Previous Reference
OXOR L / ! Trivial
> > rivia
3 '3
o 2 4 s
2EOR 1 1 Trivial
2AND : / E Biased [
9 B iased sampling
-
20R g 5’ 1 Biased sampling

Summary of the DBHP Technique

28

Summary of the DBHP Technique

o Step 1: Identify the gap instances for Max-CSP of type A.

28

Summary of the DBHP Technique

o Step 1: Identify the gap instances for Max-CSP of type A.

* Step 2: Connect one of the three distributions of DBHP to the gap instances.

Yes Distribution No Distribution Yes’ Distribution

28

Conclusion

Conclusion

30

Conclusion

Theorem

For any boolean 2CSP of
type A, there exist @A, TA

such that Ve > 0,

() there’s a (ap — €)-approx.

in O(logn) space and

(i) no (s + €)-approx. in

(A(n™) space.

30

Conclusion

Theorem

For any boolean 2CSP of
type A, there exist @A, TA

such that Ve > 0,

() there’s a (ap — €)-approx.

in O(logn) space and

(i) no (s + €)-approx. in

(A(n™) space.

XOR

AND

EOR

OR

30

Q
>

M‘E o O | N

X

—

DO — DN = DN =

Reference

KK 9]

This work

This work

This work

Conclusion

Theorem

For any boolean 2CSP of
type A, there exist @A, TA

such that Ve > 0,

() there’s a (ap — €)-approx.

in O(logn) space and

(i) no (s + €)-approx. in

(A(n™) space.

30

A QA TA | Reference
1
XOR - 1 KK19]
4 1 .
AND 9 5 This work
FOR S L | This work
4 2

— This work

O
10
[
DO | =

Can be extended to Max k-SAT!

Conclusion

Theorem A o) | TA | Reference
For any boolean 2CSP of .
| XOR - 1 [KK19]
type A, there exist &, Ta 2
4 1 .
such that Ve > 0, AND 5 5 | This work
(i) there’s a(an — €)-approx. FOR Z % This work
in O(logn) space and
(5) P OR g % This work

(i) no (s + €)-approx. in

TA
(n"™) space. Local random sampling is optimal!

30

Future Directions

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.

+ Maybe need new communication lower bound?

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.
+ Maybe need new communication lower bound?

* (Mid term) Investigate the Max-2CSP with larger alphabet set.

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.
+ Maybe need new communication lower bound?
* (Mid term) Investigate the Max-2CSP with larger alphabet set.

+ [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.
+ Maybe need new communication lower bound?
* (Mid term) Investigate the Max-2CSP with larger alphabet set.
+ [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.

* (Mid term) Investigate boolean Max-CSP with larger arity.

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.

+ Maybe need new communication lower bound?
* (Mid term) Investigate the Max-2CSP with larger alphabet set.

+ [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
* (Mid term) Investigate boolean Max-CSP with larger arity.

+ |n the standard model + Unique Games Conjecture, Max-3CSP has ratio
5/8 and Max-kCSP has ratio

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.
+ Maybe need new communication lower bound?
* (Mid term) Investigate the Max-2CSP with larger alphabet set.
+ [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
* (Mid term) Investigate boolean Max-CSP with larger arity.
+ |n the standard model + Unique Games Conjecture, Max-3CSP has ratio
5/8 and Max-kCSP has ratio ©(2" /k).

* (Long term) The limit of local random sampling in streaming Max-CSP?*?

31

Future Directions

e (Short term) Improve the €2(v/n) space lower bounds.
+ Maybe need new communication lower bound?
* (Mid term) Investigate the Max-2CSP with larger alphabet set.
+ [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
* (Mid term) Investigate boolean Max-CSP with larger arity.
+ |n the standard model + Unique Games Conjecture, Max-3CSP has ratio
5/8 and Max-kCSP has ratio ©(2" /k).

* (Long term) The limit of local random sampling in streaming Max-CSP?*?

Thanks for your attention, questions?

31

Reducing DBHP to Max-2EOR

.Iﬂl‘ Bob 2 Bob T > Yes
{i j} {z./‘]} {Z‘/‘J & No

32

Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T - Yes
{o—%} | 7 | {o—%} |
L3 \/ij
L4 V Ly

32

Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T _p Yes
{z./‘]} {z‘/‘]} {Z‘/‘J & No
L \% L 4

e, \ _laij

32

Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T - Yes
(o=} | | {e—=3] = | {o—=} |
L \/xj
e, \% &y

32

Reducing DBHP to Max-2EOR

Bob 1 Bob 2 Bob T - Yes
(o=} | = | {2} >
L4 \/iEj
—X; V &y

32

Reducing DBHP to Max-2EOR

32

Reducing DBHP to Max-2EOR

Reducing DBHP to Max-2EOR

Reducing DBHP to Max-2EOR

Bob 1 Bob 2

Max-20R

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [CE‘] — 1/2, 2-clause: It [QE V y] — 3/4 '

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @

* Biased sampling:

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:

+ Random sample with the biases of 1-clause and 2-clause.

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [gj] — 1/2, 2-clause: It [QE V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &
 Gap instances:

33

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [ZE’] — 1/2, 2-clause: It [ZU V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &
 Gap instances:

Max-20R

 Observation: The expected value of 1-clause < 2-clause!

+ 1-clause: K [ZE’] — 1/2, 2-clause: It [ZU V y] — 3/4 '

 Thus, the 3/4-approx. for Max-2EOR does not work @
* Biased sampling:
+ Random sample with the biases of 1-clause and 2-clause.

+ This gives v/2/2-approx. &
 Gap instances:

Reducing DBHP to Max-20R

34

Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X* { «—9;} { o—%}

34

Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X {oe—%} | 7 | {o—%}

34

Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X {oe—%} | 7 | {o—%}

ZEi\/ZEj

(7)) V (—5)

34

Reducing DBHP to Max-20R

Alice Bob 1 Bob T
X {oe—%} | 7 | {o—%}
L \ L 5

34

Reducing DBHP to Max-20R

34

Reducing DBHP to Max-20R

Reducing DBHP to Max-20R

Yes

Reducing DBHP to Max-20R

