Optimal Streaming Approximations for all Boolean Max 2-CSPs and Max k-SAT

Chi-Ning Chou

Sasha Golonev

Harvard University

FOCS 2020

Santhoshini Velusamy

Constraint satisfaction problem (CSP) in the streaming model.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - * Proving unconditional hardness in streaming model is more doable.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - * Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - * Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - * Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - + Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - + Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - * Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed
 2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.
- We show that 4/9-approximation is the right answer!

- Constraint satisfaction problem (CSP) in the streaming model.
 - * CSP is one of the central computational problems in complexity theory.
 - + Proving unconditional hardness in streaming model is more doable.
- Motivating example: Max-DICUT.

- Trivial algorithm gives 1/4-approx.; [Guruswami-Velingker-Velusamy 17] showed
 2/5-approx.; [GVV17] + [Kapralov-Khanna-Sudan 15]: 1/2-approx. is impossible.
- We show that 4/9-approximation is the right answer!
- Further, we characterize the approximation ratio of every boolean 2-CSP!

Definitions

• Variables: x_1, x_2, \ldots, x_n taking values in Σ .

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S \subset [n]$.

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S \subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k\to\{0,1\}$ and $S\subset[n]$. Example: $f(\cdot,\cdot)=\cdot\wedge\cdot$ and $S=\{3,8\}$, read as $x_3\wedge x_8$.
- Input: $C = \{(f, S)\}$, number of constraints = m.

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S\subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S\subset [n]$.
 - Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.
- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\operatorname{val}_{\mathcal{C}} = \max_{\sigma: [n] \to \Sigma} |\{(f, S) \in \mathcal{C}: \ f(\sigma(x_S)) = 1\}| \in [0, m]$$
.

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S\subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\mathrm{val}_{\mathcal{C}} = \max_{\sigma:[n] \to \Sigma} |\{(f,S) \in \mathcal{C}: \ f(\sigma(x_S)) = 1\}| \in [0,m]$$
 . Assignment Restriction of the variables

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S\subset [n]$.
 - Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.
- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\operatorname{val}_{\mathcal{C}} = \max_{\sigma: [n] \to \Sigma} |\{(f,S) \in \mathcal{C}: \ f(\sigma(x_S)) = 1\}| \in [0,m]$$
 .

Max-CUT as a CSP

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S\subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\operatorname{val}_{\mathcal{C}} = \max_{\sigma: [n] \to \Sigma} |\{(f,S) \in \mathcal{C}: \ f(\sigma(x_S)) = 1\}| \in [0,m]$$
 .

Max-CUT as a CSP

An undirected graph G.

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S\subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\operatorname{val}_{\mathcal{C}} = \max_{\sigma: [n] \to \Sigma} |\{(f,S) \in \mathcal{C}: \ f(\sigma(x_S)) = 1\}| \in [0,m]$$
 .

Max-CUT as a CSP

An undirected graph G.

• Variables: $x_i = 1 \Leftrightarrow i \in T$

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S \subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\operatorname{val}_{\mathcal{C}} = \max_{\sigma: [n] \to \Sigma} |\{(f,S) \in \mathcal{C}: \ f(\sigma(x_S)) = 1\}| \in [0,m]$$
 .

Max-CUT as a CSP

An undirected graph G.

- Variables: $x_i = 1 \Leftrightarrow i \in T$ Constraints: $(i,j) \in E \Leftrightarrow x_i \oplus x_j \in \mathcal{C}$

- Variables: x_1, x_2, \ldots, x_n taking values in Σ .
- Constraints: (f,S) where $f:\Sigma^k \to \{0,1\}$ and $S \subset [n]$.

Example: $f(\cdot, \cdot) = \cdot \wedge \cdot$ and $S = \{3, 8\}$, read as $x_3 \wedge x_8$.

- Input: $C = \{(f, S)\}$, number of constraints = m.
- Output: The value of C. Namely, the largest # of satisfied constraints.

Formally, define
$$\operatorname{val}_{\mathcal{C}} = \max_{\sigma:[n]\to\Sigma} |\{(f,S)\in\mathcal{C}:\ f(\sigma(x_S))=1\}|\in[0,m]$$
 .

Max-CUT as a CSP

An undirected graph G.

- Variables: $x_i=1\Leftrightarrow i\in T$ Constraints: $(i,j)\in E\Leftrightarrow x_i\oplus x_j\in \mathcal{C}$
 - Value: $val_{\mathcal{C}} = max cut value$

CSP is ubiquitous and has been extremely well-studied!

- CSP is ubiquitous and has been extremely well-studied!
- Some CSPs are easy and some are hard to solve exactly.

- CSP is ubiquitous and has been extremely well-studied!
- Some CSPs are easy and some are hard to solve exactly.

- CSP is ubiquitous and has been extremely well-studied!
- Some CSPs are easy and some are hard to solve exactly.

What about solving CSP approximately?

Approximation <=> Distinguishing instances with different values.

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the

following.

Yes: $val_{\mathcal{C}} \geq v$

No: $val_{\mathcal{C}} < \alpha \cdot v$

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

Yes: $\operatorname{val}_{\mathcal{C}} \geq v$ No: $\operatorname{val}_{\mathcal{C}} < \alpha \cdot v$

• $\alpha = 1$: the exact version; $\alpha = 1 - \epsilon, \forall \epsilon > 0$: fully approximation.

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following. Yes: $val_C > v$

No: $val_{\mathcal{C}} < \alpha \cdot v$

• $\alpha = 1$: the exact version; $\alpha = 1 - \epsilon, \forall \epsilon > 0$: fully approximation.

Algorithmic side: Random sampling, SDP-based algorithms.

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

No: $val_{\mathcal{C}} < \alpha \cdot v$

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.

Yes: $val_{\mathcal{C}} \geq v$

• Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Max-CUT:
0

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).

```
Max-CUT:

0
1/2
```

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).

```
Max-CUT:

0 1/2 0.878 1
```

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).

Approximation <=> Distinguishing instances with different values.

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in (0,m]$, can distinguish the following.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).
- Many fascinating results and open problems!

Unifying Theory for Approx. CSP!?

Unifying Theory for Approx. CSP!?

Through the Lens of Streaming Model

• The input (each constraint) arrives in a stream.

• Only having o(n) or even $O(\log n)$ space.

- Only having o(n) or even $O(\log n)$ space.
- Observation: Cannot even store an assignment (which requires n bits)!

- Only having o(n) or even $O(\log n)$ space.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer v such that

- Only having o(n) or even $O(\log n)$ space.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer v such that
 - ullet there exists an assignment satisfying v constraints and

- Only having o(n) or even $O(\log n)$ space.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer v such that
 - ullet there exists an assignment satisfying v constraints and
 - $v \geq \alpha \cdot \mathsf{val}_{\mathcal{C}}$.

• Trivial random sampling gives 1/2-approximation using $O(\log n)$ space.

• $\forall \epsilon > 0$, there's no $(1/2+\epsilon)$ -approximation streaming algorithm for Max-CUT!

- $\forall \epsilon > 0$, there's no $(1/2+\epsilon)$ -approximation streaming algorithm for Max-CUT!
 - + [Kapralov-Khanna-Sudan 15]: $\tilde{\Omega}(\sqrt{n})$ space.

- $\forall \epsilon > 0$, there's no $(1/2+\epsilon)$ -approximation streaming algorithm for Max-CUT!
 - + [Kapralov-Khanna-Sudan 15]: $\tilde{\Omega}(\sqrt{n})$ space.
 - * [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs $\Omega(n)$ space.

- $\forall \epsilon > 0$, there's no $(1/2+\epsilon)$ -approximation streaming algorithm for Max-CUT!
 - + [Kapralov-Khanna-Sudan 15]: $\tilde{\Omega}(\sqrt{n})$ space.
 - ullet [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs $\Omega(n)$ space.
 - + [Kapralov-Krachun 19]: $\Omega(n)$ space.

• Trivial random sampling gives 1/2-approximation using $O(\log n)$ space.

- $\forall \epsilon > 0$, there's no $(1/2+\epsilon)$ -approximation streaming algorithm for Max-CUT!
 - + [Kapralov-Khanna-Sudan 15]: $\tilde{\Omega}(\sqrt{n})$ space.
 - ullet [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs $\Omega(n)$ space.
 - + [Kapralov-Krachun 19]: $\Omega(n)$ space.

There's a SDP-based algorithm which gives **0.878**-approx.

• Trivial random sampling now gives 1/4-approximation using $O(\log n)$ space.

• Hardness side: no $(1/2+\epsilon)$ -approximation using o(n) space (from Max-CUT).

- Hardness side: no $(1/2+\epsilon)$ -approximation using o(n) space (from Max-CUT).
- Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

- Hardness side: no $(1/2+\epsilon)$ -approximation using o(n) space (from Max-CUT).
- Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.

Max-DICUT in the Streaming Model

• Trivial random sampling now gives 1/4-approximation using $O(\log n)$ space.

- Hardness side: no $(1/2+\epsilon)$ -approximation using o(n) space (from Max-CUT).
- Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.
- What's the "right approximation ratio"?

Max-DICUT in the Streaming Model

• Trivial random sampling now gives 1/4-approximation using $O(\log n)$ space.

- Hardness side: no $(1/2+\epsilon)$ -approximation using o(n) space (from Max-CUT).
- Algorithm side: [Guruswami-Velingker-Velusamy 17] gave a 2/5-approximation.
- What's the "right approximation ratio"?
- What about other CSP?

• The answer of Max-DICUT is 4/9 @

• The answer of Max-DICUT is 4/9 😳

• Further, we characterize the approximation ratio of every boolean 2CSP!

• The answer of Max-DICUT is 4/9 😳

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

• The answer of Max-DICUT is 4/9 😳

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

The answer of Max-DICUT is 4/9

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

For any boolean 2CSP of type Λ , there exist $\alpha_{\Lambda}, \tau_{\Lambda} \in (0,1]$ such that $\forall \epsilon > 0$,

(i) there's a $(\alpha_{\Lambda} - \epsilon)$ -approx. in $O(\log n)$ space and

The answer of Max-DICUT is 4/9

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

• The answer of Max-DICUT is 4/9 ©

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

• The answer of Max-DICUT is 4/9 ©

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]

• The answer of Max-DICUT is 4/9 ©

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work

• The answer of Max-DICUT is 4/9 ©

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work
EOR	$\frac{3}{4}$	$\frac{1}{2}$	This work

The answer of Max-DICUT is 4/9

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work
EOR	$\frac{3}{4}$	$\frac{1}{2}$	This work
OR	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	This work

• The answer of Max-DICUT is 4/9 ©

• Further, we characterize the approximation ratio of every boolean 2CSP!

Theorem (main).

For any boolean 2CSP of type Λ , there exist $\alpha_{\Lambda}, \tau_{\Lambda} \in (0,1]$ such that $\forall \epsilon > 0$,

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work
EOR	$rac{3}{4}$	$\frac{1}{2}$	This work
OR	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	This work

Can be extended to Max k-SAT!

Algorithms

Algorithms

with a focus on Max-DICUT

• Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

• bias(v) = in-degree - out-degree

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

• bias(v) = in-degree - out-degree

Example:

$$\mathsf{bias}(2) = -1$$

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

- bias(v) = in-degree out-degree
- Total bias: $B = \sum_{v} |\text{bias}(v)| \in [0, 2m]$

Example:

$$\mathsf{bias}\left(\mathbf{X}\right) = -1$$

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

- bias(v) = in-degree out-degree
- Total bias: $B = \sum_{v} |\text{bias}(v)| \in [0, 2m]$

Example:

$$\mathsf{bias}(\mathbf{X}) = -1$$

Total bias B can be estimated in $O(\log n)$ space!

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

- bias(v) = in-degree out-degree
- Total bias: $B = \sum_{v} |\text{bias}(v)| \in [0, 2m]$

Example:

$$\mathsf{bias}(\mathbf{X}) = -1$$

Total bias B can be estimated in $O(\log n)$ space!

Can you see why?

- Recall: Trivial algorithm gives 1/4-approx. while 1/2-approx. is hard.
- Idea: Consider the bias of each vertex.

Definition (bias and total bias):

- bias(v) = in-degree out-degree
- Total bias: $B = \sum_{v} |\operatorname{bias}(v)| \in [0, 2m]$

Example:

$$bias(2) = -1$$

Total bias B can be estimated in $O(\log n)$ space!

- Can you see why?
- Understand the relation between B and $val_{\mathcal{C}}$ could give approximation.

Definition (bias and total bias):

$$bias(v) = in-degree - out-degree$$
 and $B = \sum_{v} |bias(v)|$

Definition (bias and total bias):

$$bias(v) = in-degree - out-degree$$
 and $B = \sum_{v} |bias(v)|$

Definition (bias and total bias):

$$bias(v) = in-degree - out-degree$$
 and $B = \sum_{v} |bias(v)|$

• Blue line (cut value upper bound):

Definition (bias and total bias):

$$bias(v) = in-degree - out-degree$$
 and $B = \sum_{v} |bias(v)|$

• Blue line (cut value upper bound):

Red line: The cut value of greedy cut.

Definition (bias and total bias):

$$bias(v) = in-degree - out-degree$$
 and $B = \sum_{v} |bias(v)|$

• Blue line (cut value upper bound):

- Red line: The cut value of greedy cut.
- Streaming algorithm: Estimate *B* and output the red line.

Definition (bias and total bias):

$$bias(v) = in-degree - out-degree$$
 and $B = \sum_{v} |bias(v)|$

• Blue line (cut value upper bound):

- Red line: The cut value of greedy cut.
- Streaming algorithm: Estimate *B* and output the red line.
- Ratio: When B = 1/2, the ratio is 2/5.

New Idea: Random Sampling

New Idea: Random Sampling with Bias

New Idea: Random Sampling with Bias

• Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!
- Random sampling with bias: Let δ be a const. chosen later. For each i ,

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!
- Random sampling with bias: Let δ be a const. chosen later. For each i ,

ullet i

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!
- Random sampling with bias: Let δ be a const. chosen later. For each i,

In-going set with probability
$$\frac{1}{2} + \delta \cdot \mathrm{sgn} \Big(\mathrm{bias} \Big(\bullet_i \Big) \Big)$$

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!
- Random sampling with bias: Let δ be a const. chosen later. For each i,

In-going set with probability
$$\frac{1}{2} + \delta \cdot \mathrm{sgn} \Big(\mathrm{bias} \Big(\bullet_i \Big) \Big)$$

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!
- Random sampling with bias: Let δ be a const. chosen later. For each i,

In-going set with probability
$$\frac{1}{2} + \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet_{i}\right)\right)$$

Out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet_{i}\right)\right)$

 $\delta = 0$ recovers trivial random sampling.

- Recall: Trivial random sampling gives 1/4-approx. by outputting #edges/4.
- Observation: This is tight for random sampling because
 - (i) there's a graph with optimal cut value #edges and
 - (ii) there's a graph with optimal cut value #edges/4.

- However, by [GVV17], the total bias B of (i) and (ii) are in different ranges!
- Random sampling with bias: Let δ be a const. chosen later. For each i,

In-going set with probability
$$\frac{1}{2} + \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$$
 out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$ out-going set with probability $\frac{1}{2} - \delta \cdot \operatorname{sgn}\left(\operatorname{bias}\left(\bullet\right._i\right)\right)$

 $\delta = 0$ recovers trivial random sampling.

$$\delta = 1/2$$
 gets [GVV17].

$$\operatorname{val}_{\mathcal{C}} \geq \frac{\# \text{ edges}}{4} + \frac{B^2}{16(\# \text{ edges} - B)} \quad \text{ when } \quad B \in \left[0, \frac{2}{3}\right]$$

$$\operatorname{val}_{\mathcal{C}} \geq \frac{\# \text{ edges}}{4} + \frac{B^2}{16(\# \text{ edges} - B)} \quad \text{ when } \quad B \in \left[0, \frac{2}{3}\right]$$

- Blue line: cut value upper bound.
- Red line: The cut value of greedy cut.

$$\operatorname{val}_{\mathcal{C}} \geq \frac{\# \text{ edges}}{4} + \frac{B^2}{16(\# \text{ edges} - B)} \quad \text{ when } \quad B \in \left[0, \frac{2}{3}\right]$$

- Blue line: cut value upper bound.
- Red line: The cut value of greedy cut.
- Green line: Cut value achieved by random sampling with bias.

$$\operatorname{val}_{\mathcal{C}} \geq \frac{\# \text{ edges}}{4} + \frac{B^2}{16(\# \text{ edges} - B)} \quad \text{ when } \quad B \in \left[0, \frac{2}{3}\right]$$

- Blue line: cut value upper bound.
- Red line: The cut value of greedy cut.
- Green line: Cut value achieved by random sampling with bias.
- Streaming algorithm: Estimate B and output max {green line, red line}.

$$\operatorname{val}_{\mathcal{C}} \geq \frac{\# \text{ edges}}{4} + \frac{B^2}{16(\# \text{ edges} - B)} \quad \text{ when } \quad B \in \left[0, \frac{2}{3}\right]$$

- Blue line: cut value upper bound.
- Red line: The cut value of greedy cut.
- Green line: Cut value achieved by random sampling with bias.
- Streaming algorithm: Estimate *B* and output max {green line, red line}.
- Ratio: When B = 2/5, the ratio is 4/9.

Λ	Previous	Reference
-----------	----------	-----------

Λ	α_{Λ}	Previous	Reference
2XOR	$\frac{1}{2}$	$\frac{1}{2}$	Trivial

Λ	α_{Λ}	Previous	Reference
2XOR	$\frac{1}{2}$	$rac{1}{2}$	Trivial
2EOR	$rac{3}{4}$	$\left[rac{3}{4},1 ight]$	Trivial

Λ	α_{Λ}	Previous	Reference
2XOR	$\frac{1}{2}$	$rac{1}{2}$	Trivial
2EOR	$\frac{3}{4}$	$\left[rac{3}{4},1 ight]$	Trivial
2AND	$\frac{4}{9}$	$\left[rac{2}{5},rac{1}{2} ight]$	Biased sampling

Λ	α_{Λ}	Previous	Reference
2XOR	$\frac{1}{2}$	$\frac{1}{2}$	Trivial
2EOR	$rac{3}{4}$	$\left[rac{3}{4},1 ight]$	Trivial
2AND	$\frac{4}{9}$	$\left[rac{2}{5},rac{1}{2} ight]$	Biased sampling
20R	$\frac{\sqrt{2}}{2}$	$\left[rac{1}{2},1 ight]$	Biased sampling

• It turns out that the optimal approx. ratio of all the boolean 2CSP can be achieved by local random sampling analysis.

Λ	α_{Λ}	Previous	Reference
2XOR	$\frac{1}{2}$	$rac{1}{2}$	Trivial
2EOR	$rac{3}{4}$	$\left[rac{3}{4},1 ight]$	Trivial
2AND	$\frac{4}{9}$	$\left[rac{2}{5},rac{1}{2} ight]$	Biased sampling
20R	$\frac{\sqrt{2}}{2}$	$\left[\frac{1}{2},1\right]$	Biased sampling

See our paper for more details!

Hardness

Hardness

Find Instances Matching Random Sampling's Bounds

Unconditional lower bounds from communication games.

- Unconditional lower bounds from communication games.
- High-level idea:

- Unconditional lower bounds from communication games.
- High-level idea:

- Unconditional lower bounds from communication games.
- High-level idea:

• **Usage**: Alice and Bob insert some inputs to the streaming algorithm and send the "*configuration*" as the message.

- Unconditional lower bounds from communication games.
- High-level idea:

- **Usage**: Alice and Bob insert some inputs to the streaming algorithm and send the "*configuration*" as the message.
- Space complexity of streaming algorithm >= communication complexity.

Distributional Boolean Hidden Partition (DBHP) Problem

Distributional Boolean Hidden Partition (DBHP) Problem

• Used by [Kapralov-Khanna-Sudan-15] in proving hardness of Max-Cut.

Distributional Boolean Hidden Partition (DBHP) Problem

Used by [Kapralov-Khanna-Sudan-15] in proving hardness of Max-Cut.

Alice

$$X^* \in \{0, 1\}^n$$

* Each row of M contains exactly two 1s.

* Each row of M contains exactly two 1s.

* Each row of M contains exactly two 1s.

Used by [Kapralov-Khanna-Sudan-15] in proving hardness of Max-Cut.

• Yes distribution: Exists $X^* \in \{0,1\}^n$ such that $w_t = M_t X^*, \ \forall t \in [T]$.

* Each row of M contains exactly two 1s.

- Yes distribution: Exists $X^* \in \{0,1\}^n$ such that $w_t = M_t X^*, \ \forall t \in [T]$.
- No distribution: w_t is uniformly random $\forall t \in [T]$.

* Each row of M contains exactly two 1s.

- Yes distribution: Exists $X^* \in \{0,1\}^n$ such that $w_t = M_t X^*, \ \forall t \in [T]$.
- No distribution: w_t is uniformly random $\forall t \in [T]$.
- [Gavinsky et al. 07] showed that DBHP needs $\Omega(\sqrt{n})$ communication.

* Each row of M contains exactly two 1s.

- Yes distribution: Exists $X^* \in \{0,1\}^n$ such that $w_t = M_t X^*, \ \forall t \in [T]$.
- No distribution: w_t is uniformly random $\forall t \in [T]$.
- [Gavinsky et al. 07] showed that DBHP needs $\Omega(\sqrt{n})$ communication.
- Parallel repetition: constant many copies to increase the number of edges.

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

$$egin{aligned} \mathbf{Bob} \ \mathbf{1} \ w_1 &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^ op \ M_1 &= \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \end{aligned} \qquad egin{aligned} \mathbf{W}_2 &= \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^ op \ M_2 &= \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

Bob 3

$$egin{aligned} egin{aligned} egi$$

$$egin{aligned} egin{aligned} egi$$

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$
 $M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Can you see this is a Yes case or No case?
 - Yes distribution: Exists $X^* \in \{0,1\}^n$ such that $w_t = M_t X^*, \ \forall t \in [T]$.
 - No distribution: w_t is uniformly random $\forall t \in |T|$.

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$
 $M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Can you see this is a Yes case or No case?
- The answer is **Yes**. The hidden partition is $X^* = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \end{bmatrix}^{\top}$.

Bob 1 Bob 2 Bob 3 $w_1 = [1 \ 0 \ 0]^\top$ $w_2 = [1 \ 0 \ 1]^\top$ $w_3 = [1 \ 1 \ 0]^\top$

$$M_1 = egin{bmatrix} 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \end{bmatrix} egin{bmatrix} M_2 = egin{bmatrix} 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} M_3 = egin{bmatrix} 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M_2 = egin{bmatrix} 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Can you see this is a Yes case or No case?
- The answer is **Yes**. The hidden partition is $X^* = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \end{bmatrix}^{\top}$.
- Can you see the connection to Max-CUT?

<u>Bob 1</u>

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Bob 2

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{ op}$$
 $M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

<u>Bob 1</u>

Bob 2

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{ op}$$
 $M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

$$w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$$
 $M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

<u>Bob 1</u>

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Bob 2

$$w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$
 $M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

<u>Bob 1</u>

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Bob 2

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top} \qquad w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top} \qquad w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c} \mathbf{BOD 3} \\ w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}^{\top} \\ \mathbf{V}_3 = \begin{bmatrix}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

<u>Bob 1</u>

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Bob 2

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top} \qquad w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top} \qquad w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$w_3 = [1 \ 1 \ 0]^{\top}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bob 1

Bob 2

 $w_2 = [1 \ 0 \ 1]^{\top}$

$$M_2 = egin{bmatrix} 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Bob 3

$$w_3 = [1 \ 1 \ 0]^{\top}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bob 1

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{ op}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Bob 2

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top} \qquad w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top} \qquad w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bob 1

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Bob 2

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\mathsf{T}}$$
 $M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

<u>Bob 1</u>

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Bob 2

$$w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

<u>Bob 1</u>

Bob 2

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}$$
 $M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

$$w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bob 1

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Bob 2

$$w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}$$

$$M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top} \qquad w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top} \qquad w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bob 1

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$$
 $M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Bob 2

$$w_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top} \qquad w_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top} \qquad w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_1 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Bob 3

$$w_3 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}$$

$$M_3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

• Think of each row of M_t as a random edge and w_t picks the edges.

• Think of each row of M_t as a random edge and w_t picks the edges.

Yes Distribution No Distribution

• Think of each row of M_t as a random edge and w_t picks the edges.

Yes Distribution

 $\exists X^* \text{ s.t. } w_t = M_t X^*$

No Distribution

• Think of each row of M_t as a random edge and w_t picks the edges.

Yes Distribution

 $\exists X^* \text{ s.t. } w_t = M_t X^*$

No Distribution

 w_t is uniformly random

• Think of each row of M_t as a random edge and w_t picks the edges.

No Distribution

 w_t is uniformly random

• Think of each row of M_t as a random edge and w_t picks the edges.

• Think of each row of M_t as a random edge and w_t picks the edges.

• Each player possesses a subset of the edges.

• Think of each row of M_t as a random edge and w_t picks the edges.

Yes' Distribution

• Each player possesses a subset of the edges.

• Think of each row of M_t as a random edge and w_t picks the edges.

Yes' Distribution

 $\exists X^* \text{ s.t. } w_t = \mathbf{1} - M_t X^*$

• Each player possesses a subset of the edges.

• Think of each row of M_t as a random edge and w_t picks the edges.

Each player possesses a subset of the edges.

 $\frac{\text{Bob 1}}{w_1 \in \{0, 1\}^{0.01n}}$

 $\frac{\text{Bob 2}}{w_2 \in \{0, 1\}^{0.01n}}$

Bob T

 $w_T \in \{0, 1\}^{0.01n}$

$$\mathsf{val}_\mathcal{C} = m$$

$$\mathsf{val}_{\mathcal{C}} < \left(\frac{1}{2} + o(1)\right) \cdot m$$

$$\mathsf{val}_\mathcal{C} = m$$

$$\mathsf{val}_{\mathcal{C}} < \left(\frac{1}{2} + o(1)\right) \cdot m$$

$$\mathsf{val}_\mathcal{C} = m$$

$$\mathsf{val}_{\mathcal{C}} < \left(\frac{1}{2} + o(1)\right) \cdot m$$

Boolean 2CSP

Λ	$\alpha_{f \Lambda}$	Previous	Reference
2XOR	$\frac{1}{2}$	$\frac{1}{2}$	Trivial
2EOR	$rac{3}{4}$	$\left[\frac{3}{4},1\right]$	Trivial
2AND	$\frac{4}{9}$	$\left[rac{2}{5},rac{1}{2} ight]$	Biased sampling
20R	$\frac{\sqrt{2}}{2}$	$\left[\frac{1}{2},1\right]$	Biased sampling

 X^*

. . .

$$\operatorname{val}_{\mathcal{C}} \ge \left(1 - o(1)\right) \left(\frac{m}{2} + \frac{B}{4}\right)$$

Yes Distribution

$$\operatorname{val}_{\mathcal{C}} \geq \left(1 - o(1)\right) \left(\frac{m}{2} + \frac{B}{4}\right)$$

$$\operatorname{val}_{\mathcal{C}} \geq \left(1 - o(1)\right) \left(\frac{m}{2} + \frac{B}{4}\right) \operatorname{val}_{\mathcal{C}} < \left(1 + o(1)\right) \left(\frac{m}{4} + \frac{B^2}{16(m - B)}\right)$$

$$\operatorname{val}_{\mathcal{C}} \geq \left(1 - o(1)\right) \left(\frac{m}{2} + \frac{B}{4}\right)$$

$$\operatorname{val}_{\mathcal{C}} \geq \left(1 - o(1)\right) \left(\frac{m}{2} + \frac{B}{4}\right) \operatorname{val}_{\mathcal{C}} < \left(1 + o(1)\right) \left(\frac{m}{4} + \frac{B^2}{16(m - B)}\right)$$

 X^*

• • •

Yes Distribution + The second of the second

$$\operatorname{val}_{\mathcal{C}} \geq \left(1 - o(1)\right) \left(\frac{m}{2} + \frac{B}{4}\right) \operatorname{val}_{\mathcal{C}} < \left(1 + o(1)\right) \left(\frac{m}{4} + \frac{B^2}{16(m - B)}\right)$$

Boolean 2CSP

Λ	α_{Λ}	Previous	Reference	
2XOR	$\frac{1}{2}$	$\frac{1}{2}$	Trivial	
2EOR	$\frac{3}{4}$	$\left[rac{3}{4},1 ight]$	Trivial	
2AND	$\frac{4}{9}$	$\left[rac{2}{5},rac{1}{2} ight]$	Biased sampling	
20R	$\frac{\sqrt{2}}{2}$	$\left[rac{1}{2},1 ight]$	Biased sampling	

Summary of the DBHP Technique

Summary of the DBHP Technique

• Step 1: Identify the gap instances for Max-CSP of type Λ.

Summary of the DBHP Technique

- Step 1: Identify the gap instances for Max-CSP of type Λ .
- Step 2: Connect one of the three distributions of DBHP to the gap instances.

Theorem

For any boolean 2CSP of type Λ , there exist $\alpha_{\Lambda}, \tau_{\Lambda}$ such that $\forall \epsilon > 0$,

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Theorem

For any boolean 2CSP of type Λ , there exist α_{Λ} , τ_{Λ} such that $\forall \epsilon > 0$,

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work
EOR	$\frac{3}{4}$	$\frac{1}{2}$	This work
OR	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	This work

Theorem

For any boolean 2CSP of type Λ , there exist α_{Λ} , τ_{Λ} such that $\forall \epsilon > 0$,

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work
EOR	$\frac{3}{4}$	$\frac{1}{2}$	This work
OR	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	This work

Can be extended to Max k-SAT!

Theorem

For any boolean 2CSP of type Λ , there exist α_{Λ} , τ_{Λ} such that $\forall \epsilon > 0$,

- (i) there's a $(\alpha_{\Lambda} \epsilon)$ -approx. in $O(\log n)$ space and
- (ii) no $(\alpha_{\Lambda} + \epsilon)$ -approx. in $\Omega(n^{\tau_{\Lambda}})$ space.

Λ	α_{Λ}	$ au_{f \Lambda}$	Reference
XOR	$\frac{1}{2}$	1	[KK19]
AND	$\frac{4}{9}$	$\frac{1}{2}$	This work
EOR	$\frac{3}{4}$	$\frac{1}{2}$	This work
OR	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	This work

Local random sampling is optimal!

• (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?
- (Mid term) Investigate the Max-2CSP with larger alphabet set.

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?
- (Mid term) Investigate the Max-2CSP with larger alphabet set.
 - * [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?
- (Mid term) Investigate the Max-2CSP with larger alphabet set.
 - * [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
- (Mid term) Investigate boolean Max-CSP with larger arity.

Future Directions

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?
- (Mid term) Investigate the Max-2CSP with larger alphabet set.
 - * [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
- (Mid term) Investigate boolean Max-CSP with larger arity.
 - In the standard model + Unique Games Conjecture, Max-3CSP has ratio
 5/8 and Max-kCSP has ratio

Future Directions

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?
- (Mid term) Investigate the Max-2CSP with larger alphabet set.
 - * [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
- (Mid term) Investigate boolean Max-CSP with larger arity.
 - * In the standard model + Unique Games Conjecture, Max-3CSP has ratio 5/8 and Max-kCSP has ratio $\Theta(2^k/k)$.
- (Long term) The limit of local random sampling in streaming Max-CSP?

Future Directions

- (Short term) Improve the $\Omega(\sqrt{n})$ space lower bounds.
 - * Maybe need new communication lower bound?
- (Mid term) Investigate the Max-2CSP with larger alphabet set.
 - * [Guruswami-Tao 19]: the ratio of UG on size p alphabet set is 1/p.
- (Mid term) Investigate boolean Max-CSP with larger arity.
 - * In the standard model + Unique Games Conjecture, Max-3CSP has ratio 5/8 and Max-kCSP has ratio $\Theta(2^k/k)$.
- (Long term) The limit of local random sampling in streaming Max-CSP?

Thanks for your attention, questions?

$$x_i \lor x_j$$
 $\neg x_i \lor \neg x_j$

$$x_i \lor x_j$$
 $\neg x_i \lor \neg x_j$

$$x_i \lor x_j$$
 $\neg x_i \lor \neg x_j$
 \blacksquare

$$\mathsf{val}_\mathcal{C} = m$$

$$\mathsf{val}_\mathcal{C} = m$$

$$\operatorname{val}_{\mathcal{C}} < \left(\frac{3}{4} + o(1)\right) \cdot m$$

$$x_i \lor x_j$$
 $\neg x_i \lor \neg x_j$

 $x_i \vee x_j$

$$\neg x_i \lor \neg x_j$$

$$\downarrow$$

$$v \ge \left(\frac{3}{4} + \epsilon\right) \cdot m$$

$$\mathsf{val}_\mathcal{C} = m$$

$$\operatorname{val}_{\mathcal{C}} < \left(\frac{3}{4} + o(1)\right) \cdot m$$

 $\frac{\mathbf{v}}{2} \geq \left(\frac{3}{4} + \epsilon\right) \cdot m$

$$\mathsf{val}_{\mathcal{C}} = m$$

$$\operatorname{val}_{\mathcal{C}} < \left(\frac{3}{4} + o(1)\right) \cdot m$$

• Observation: The expected value of 1-clause < 2-clause!

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @
- Biased sampling:

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @
- Biased sampling:
 - * Random sample with the biases of 1-clause and 2-clause.

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @
- Biased sampling:
 - * Random sample with the biases of 1-clause and 2-clause.
 - + This gives $\sqrt{2}/2$ -approx.

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @
- Biased sampling:
 - * Random sample with the biases of 1-clause and 2-clause.
 - + This gives $\sqrt{2}/2$ -approx.
- Gap instances:

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @
- Biased sampling:
 - * Random sample with the biases of 1-clause and 2-clause.
 - + This gives $\sqrt{2}/2$ -approx.
- Gap instances:

$$\begin{cases} \{x_i\} & \{\neg x_i \lor \neg x_j\} \\ \operatorname{val}_{\mathcal{C}} < \left(\frac{\sqrt{2}}{2} + o(1)\right) \cdot m \end{cases}$$

- Observation: The expected value of 1-clause < 2-clause!
 - + 1-clause: $\mathbb{E}\left[x\right]=1/2$; 2-clause: $\mathbb{E}\left[x\vee y\right]=3/4$.
- Thus, the 3/4-approx. for Max-2EOR does not work @
- Biased sampling:
 - * Random sample with the biases of 1-clause and 2-clause.
 - + This gives $\sqrt{2}/2$ -approx.
- Gap instances:

$$\left\{x_i\right\} \ \left\{ \neg x_i \lor \neg x_j \right\}$$

$$\operatorname{val}_{\mathcal{C}} < \left(\frac{\sqrt{2}}{2} + o(1)\right) \cdot m$$

$$\left\{ x_i \right\} \; \left\{ \neg y_i \lor \neg y_j \right\}$$

$$\operatorname{val}_{\mathcal{C}} = m$$

Alice

 X^*

<u>Alice</u>

 X^*

. . .

 x_i

 $\neg x_j$

Alice

 X^*

$$x_i \lor x_j$$
 $(\neg x_i) \lor (\neg x_j)$
 \downarrow

 X^*

$$x_i \lor x_j$$
 $(\neg x_i) \lor (\neg x_j)$
 \downarrow

Yes Distribution

$$x_i \vee x_j$$

$$x_i \lor x_j$$
 $(\neg x_i) \lor (\neg x_j)$

Alice

 X^*

. . .

Yes Distribution

$$x_i \vee x_j$$

$$(\neg x_i) \lor (\neg x_j)$$

$$\mathsf{val}_{\mathcal{C}} < \left(\frac{\sqrt{2}}{2} + o(1)\right) \cdot m$$

$$\mathsf{val}_{\mathcal{C}} = m$$

Yes -

Alice

 X^*

. .

Yes Distribution

$$\mathsf{val}_{\mathcal{C}} < \left(\frac{\sqrt{2}}{2} + o(1)\right) \cdot m$$

Yes' Distribution

$$\mathsf{val}_\mathcal{C} = m$$

$$x_i \lor x_j$$

$$(\neg x_i) \lor (\neg x_j)$$

$$\mathbf{v} < \left(\frac{\sqrt{2}}{2} + \epsilon\right) \cdot m$$

Alice

 X^*

. . .

Yes Distribution

$$\mathsf{val}_{\mathcal{C}} < \left(\frac{\sqrt{2}}{2} + o(1)\right) \cdot m$$

Yes' Distribution

$$\mathsf{val}_\mathcal{C} = m$$

$$x_i \lor x_j$$
 Yes \leftarrow ($\neg x_i$) \lor ($\neg x_j$) No $v < \left(\frac{\sqrt{2}}{2} + \epsilon\right) \cdot m$ $v \ge \left(\frac{\sqrt{2}}{2} + \epsilon\right) \cdot m$