Approximability of all Finite CSPs with Linear Sketches

Chi-Ning Chou

Madhu Sudan Harvard University

Santhoshini Velusamy

Sasha Golovnev

Georgetown University

Unconditional hardness of approximating constraint satisfaction problems (CSPs) in the streaming model

Capture many common computation problems

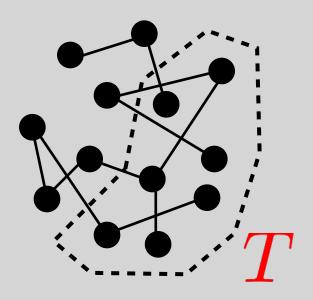
We characterize optimal approx. ratio for all finite CSPs in a weaker setting... !

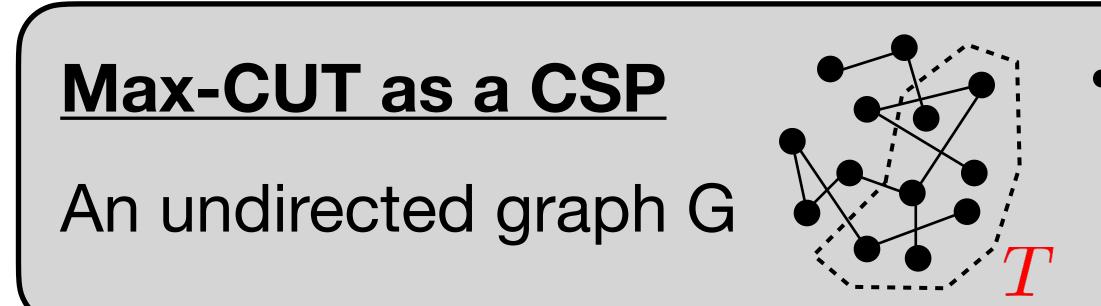
Instead of NP-hardness or UG-hardness

Practically interesting and theoretically nice

Basic Definitions

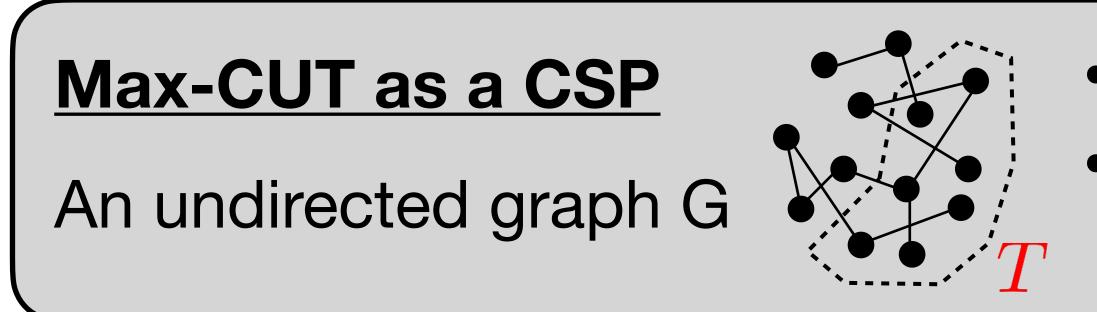
An undirected graph G





• Variables: $x_i = 1 \Leftrightarrow i \in T$

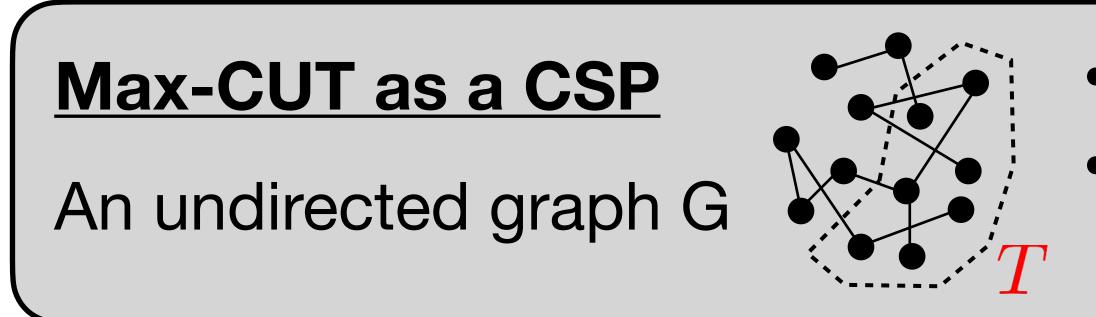
• Variables: x_1, x_2, \dots, x_n taking values in Σ (an alphabet set of finite size).



- Constraints: (f, S) where $f \in \mathscr{F} \subset \{g : \Sigma^k \to \{0, 1\}\}$ and $S \subset [n]$.

- Variables: $x_i = 1 \Leftrightarrow i \in T$
- **Constraints**: $(i, j) \in E \Rightarrow (\bigoplus, \{i, j\})$

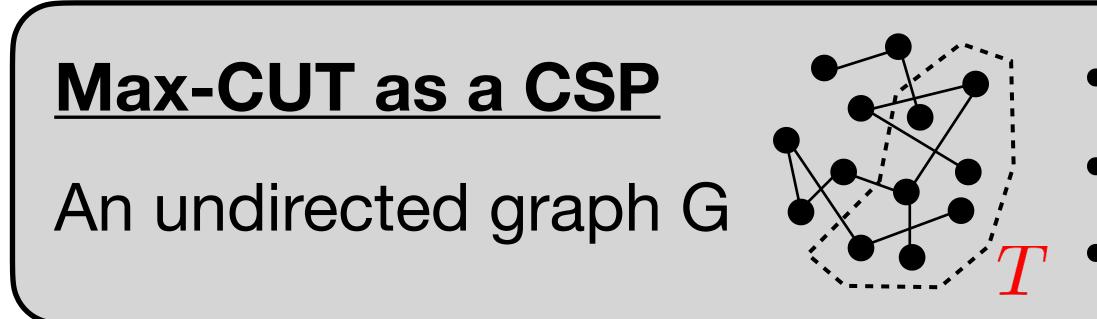
• Variables: x_1, x_2, \dots, x_n taking values in Σ (an alphabet set of finite size).



- Constraints: (f, S) where $f \in \mathscr{F} \subset \{g : \Sigma^k \to \{0, 1\}\}$ and $S \subset [n]$.
- Input: $\Psi = ((f_i, S_i))_{i \in [m]}$, number of constraints = m.

- Variables: $x_i = 1 \Leftrightarrow i \in T$
- **Constraints**: $(i, j) \in E \Rightarrow (\bigoplus, \{i, j\})$

• Variables: x_1, x_2, \dots, x_n taking values in Σ (an alphabet set of finite size).



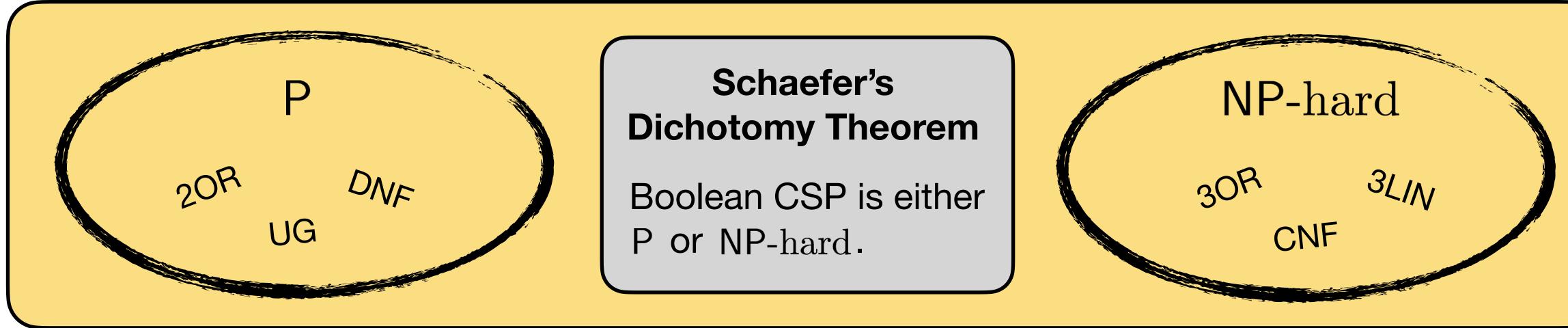
- Variables: x_1, x_2, \dots, x_n taking values in Σ (an alphabet set of finite size).
- Constraints: (f, S) where $f \in \mathscr{F} \subset \{g : \Sigma^k \to \{0, 1\}\}$ and $S \subset [n]$.
- Input: $\Psi = ((f_i, S_i))_{i \in [m]}$, number of constraints = m.
- **Output**: The value of Ψ . Namely, the largest # of satisfied constraints. Formally, define $\operatorname{val}_{\Psi} := \max_{\sigma:[n] \to \Sigma} \left| \{(f, S) \in \Psi : f(\sigma(x_S)) = 1\} \right| \in [0, m].$

- Variables: $x_i = 1 \Leftrightarrow i \in T$
- **Constraints**: $(i,j) \in E \Rightarrow (\oplus, \{i,j\})$
 - Value: $val_{\Psi} = max cut value$

- CSP is ubiquitous and has been extremely well-studied!
- Some CSPs are easy and some are hard to solve exactly.

• What about solving CSP approximately?

- CSP is ubiquitous and has been extremely well-studied!
- Some CSPs are easy and some are hard to solve exactly.



What about solving CSP approximately?

Approximating CSP

• Approximation \Leftrightarrow Distinguishing instances with different values.

- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon, \forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Many fascinating results and open problems!

<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in [0,m]$, can distinguish the

No: $val_{\Psi} < \alpha \cdot v$

Hardness side: NP-hardness or UG-hardness (through PCP theorem).

• Approximation \Leftrightarrow Distinguishing instances with different values.



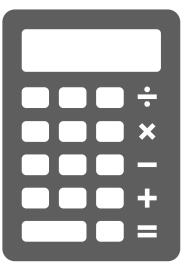
- $\alpha = 1$: the exact version; $\alpha = 1 \epsilon$, $\forall \epsilon > 0$: fully approximation.
- Algorithmic side: Random sampling, SDP-based algorithms.
- Hardness side: NP-hardness or UG-hardness (through PCP theorem).
- Many fascinating results and open problems!

ax-CUT:		1/2	0.878 0.941 1
	U	1/2	0.070 0.941 1

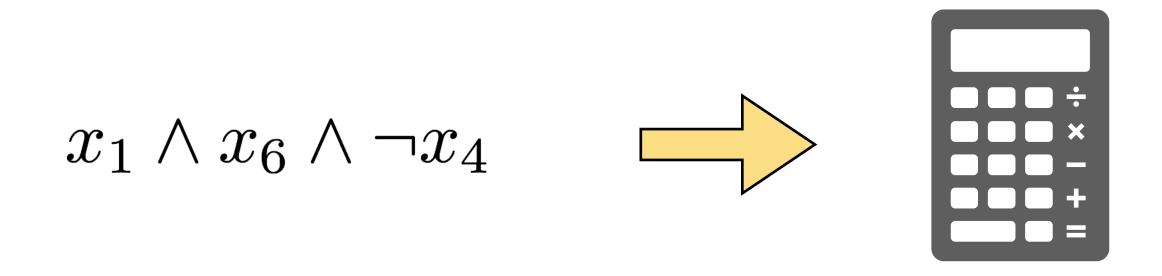
<u> α -approximation</u>: Let $\alpha \in (0,1]$. For any $v \in [0,m]$, can distinguish the

No: $val_{\Psi} < \alpha \cdot v$

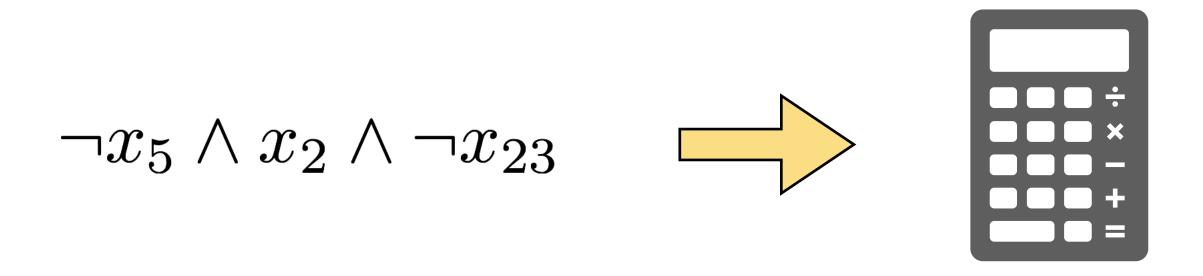
Unconditional Hardness Through the Lens of Streaming Model



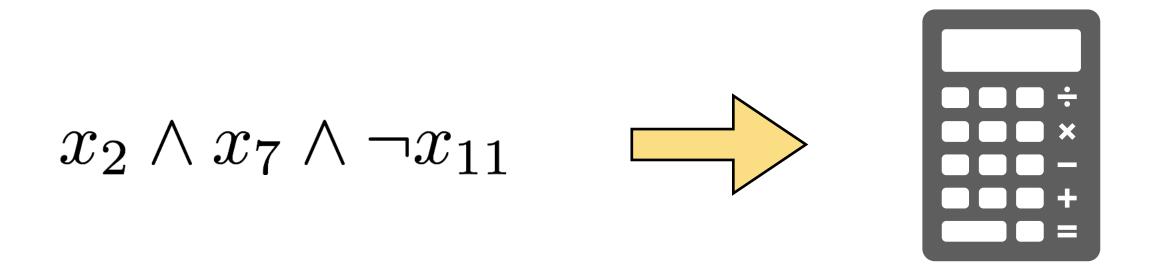
- Bounded space machine, i.e., only having o(n) or even $O(\log n)$ space.
- The input (each constraint) arrives in a stream, i.e., see the input only once.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer ν such that
 - there exists an assignment satisfying ν constraints and
 - $v \geq \alpha \cdot val_{\Psi}$.



- Bounded space machine, i.e., only having o(n) or even $O(\log n)$ space.
- The input (each constraint) arrives in a stream, i.e., see the input only once.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer ν such that
 - there exists an assignment satisfying ν constraints and
 - $v \geq \alpha \cdot val_{\Psi}$.



- Bounded space machine, i.e., only having o(n) or even $O(\log n)$ space.
- The input (each constraint) arrives in a stream, i.e., see the input only once.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer ν such that
 - there exists an assignment satisfying ν constraints and
 - $v \geq \alpha \cdot val_{\Psi}$.

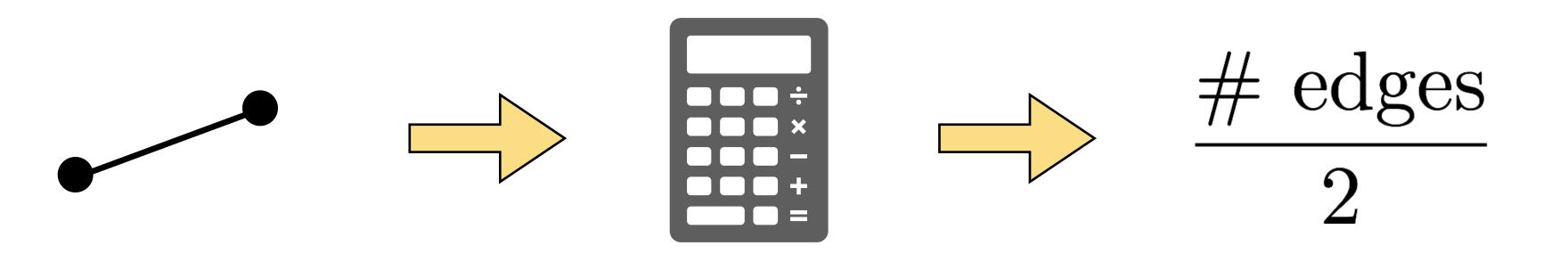


- Bounded space machine, i.e., only having o(n) or even $O(\log n)$ space.
- The input (each constraint) arrives in a stream, i.e., see the input only once.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer ν such that
 - there exists an assignment satisfying ν constraints and
 - $v \geq \alpha \cdot val_{\Psi}$.

- Bounded space machine, i.e., only having o(n) or even $O(\log n)$ space.
- The input (each constraint) arrives in a stream, i.e., see the input only once.
- Observation: Cannot even store an assignment (which requires n bits)!
- α -approximation: Output an integer ν such that
 - there exists an assignment satisfying ν constraints and
 - $v \geq \alpha \cdot val_{\Psi}$.

- Use $O(\log n)$ space to record # edges.
- Why this would work?

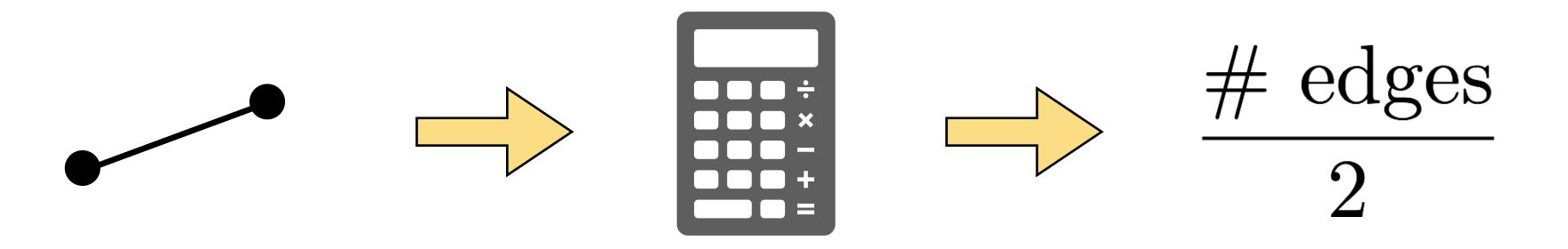
• Trivial random sampling gives 1/2-approximation in the streaming model!



- Use $O(\log n)$ space to record # edges.
- Why this would work?

$$\mathop{\mathbb{E}}_{\sigma}[\mathsf{val}_{\mathcal{C}}(\sigma)]$$

• Trivial random sampling gives 1/2-approximation in the streaming model!

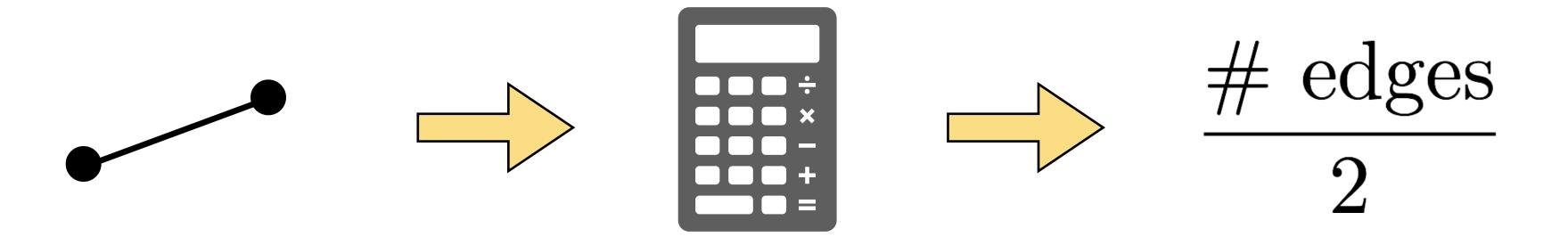


- Use $O(\log n)$ space to record # edges.
- Why this would work?

$$\mathbb{E}[\mathsf{val}_{\mathcal{C}}(\sigma)] = \sum_{e \in E(G)}$$

• Trivial random sampling gives 1/2-approximation in the streaming model!

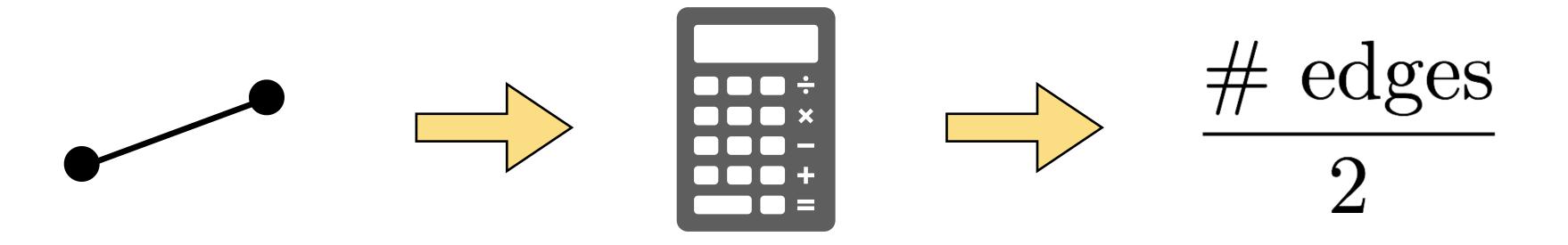
 $\Pr_{\sigma}[e \text{ is a cut}]$



- Use $O(\log n)$ space to record # edges.
- Why this would work?

$$\mathbb{E}_{\sigma}[\mathsf{val}_{\mathcal{C}}(\sigma)] = \sum_{e \in E(G)} \Pr_{\sigma}[e \text{ is a cut}] = \frac{|E(G)|}{2}$$

• Trivial random sampling gives 1/2-approximation in the streaming model!



- Use $O(\log n)$ space to record # edges.
- Why this would work?

$$\mathbb{E}_{\sigma}[\mathsf{val}_{\mathcal{C}}(\sigma)] = \sum_{e \in E(G)} \Pr_{\sigma}[e \text{ is a cut}] = \frac{|E(G)|}{2}$$

edges Random cut has value

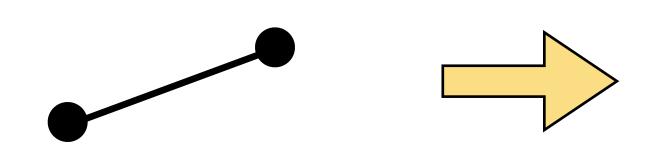
• Trivial random sampling gives 1/2-approximation in the streaming model!

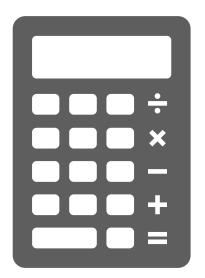
Exist a cut having value

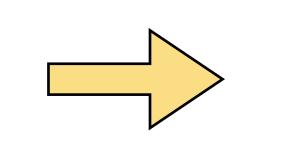
2

edges

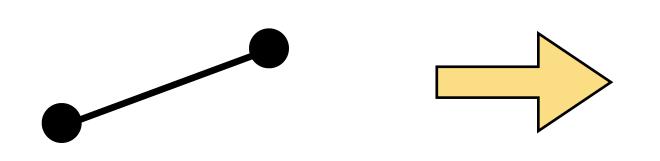
2



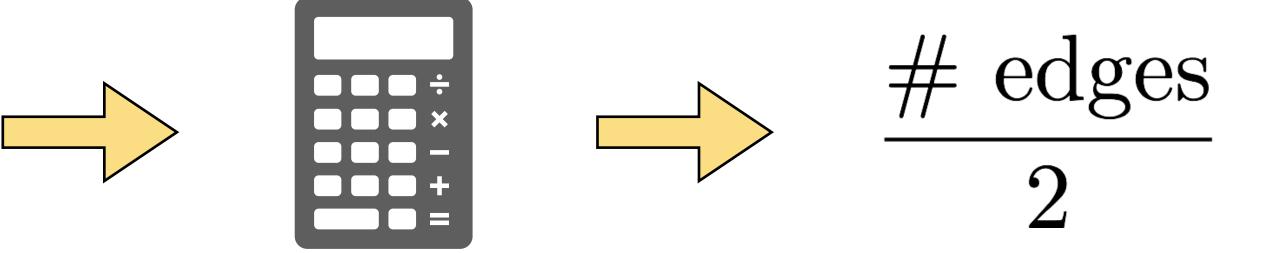




 $\frac{\text{\# edges}}{2}$



• Trivial random sampling gives 1/2-approximation using $O(\log n)$ space.



• Trivial random sampling gives 1/2-approximation using $O(\log n)$ space.

• $\forall \epsilon > 0$, there's no (1/2+ ϵ)-approximation streaming algorithm for Max-CUT!

- - + [Kapralov-Khanna-Sudan 15]: $\Omega(\sqrt{n})$ space.
 - + [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs $\Omega(n)$ space.
 - + [Kapralov-Krachun 19]: $\Omega(n)$ space.

• Trivial random sampling gives 1/2-approximation using $O(\log n)$ space.

• $\forall \epsilon > 0$, there's no (1/2+ ϵ)-approximation streaming algorithm for Max-CUT!

There's a SDP-based algorithm which gives **0.878**-approx.

More Recent Developments on the Streaming Complexity of CSPs

Paper	CSPs	Space Complexity	Type of Results
[KKS15]	Max-CUT	$\Omega(\sqrt{n})$	0.5-approx. hardness
[KKSV17]	Max-CUT	$\Omega(n)$	0.99-approx. hardness
[GVV17]	Max-DICUT	$O(\log n)$	0.4-approx. algorithm
[GT19]	Max-UG	$\Omega(\sqrt{n})$	Approx. resistance
[KK19]	Max-CUT	$\Omega(n)$	0.5-approx. hardness
[C GV20]	All Boolean 2-CSP	$O(\log n)$ v.s. $\Omega(\sqrt{n})$	Full classification
[CGSV21a]	All Boolean finite CSPs	$O(\log^3 n)$ v.s. $\Omega(\sqrt{n})$	Full classification
[C GSV21b]	All finite CSPs	$O(\log^3 n)$ v.s. $\Omega(\sqrt{n})$	Full classification
[SSV21]	All ordering CSPs	$O(\log^3 n)$ v.s. $\Omega(\sqrt{n})$	Approx. resistance
[C GSVV21]	All finite CSPs	$\Omega(n)$	Partial hardness

There are also lots of exciting recent works on graph problem and learning!

Our Results

- We characterize the approximation ratio for every finite CSPs!
- In a slightly weaker setting of "sketching algorithms".

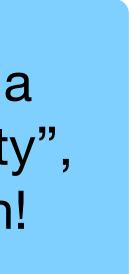
<u>Classification Theorem (Informal)*</u>

For every finite CSP, there exist α such that for every $\epsilon > 0$, space and

More details stated in later slides.

Streaming algorithms with a certain "composable property", ask me offline for definition!

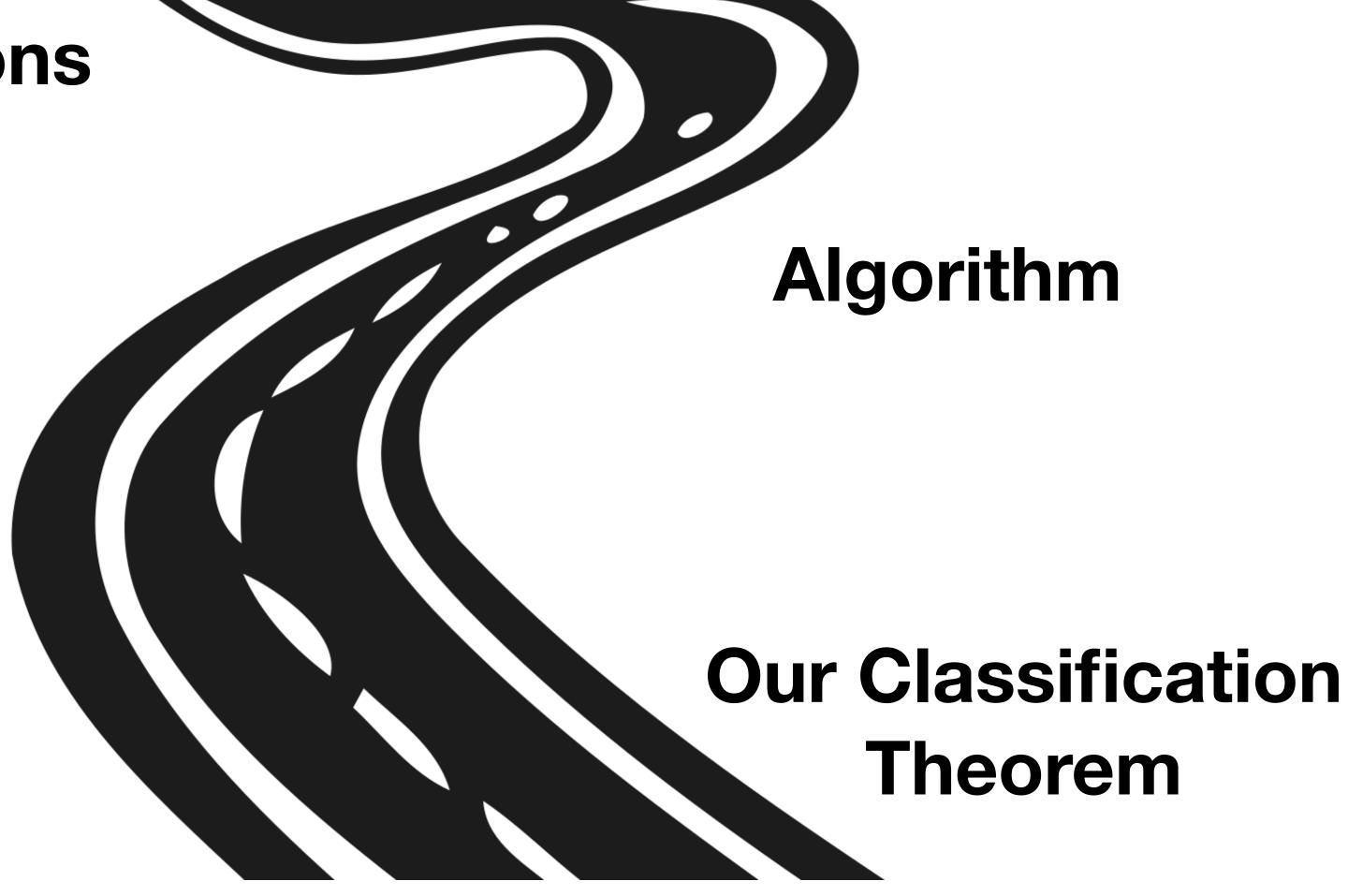
- (i) there's an $(\alpha \epsilon)$ -approx. by linear sketches that uses $O(\log^3 n)$
- (ii) $(\alpha + \epsilon)$ -approx. using sketching algorithms requires $\Omega(\sqrt{n})$ space.



Roadmap for Rest of the Talk

Conclusion & **Future Directions**

Hardness



Our Classification Theorem And a Glimpse into the Proof

Our Classification Theorem for Approximating Finite CSP

For every finite $q, k \in \mathbb{N}$, every $\mathcal{F} \subset \{f : [q]^k \to \{0,1\}\}$, and every $0 \leq \beta < \gamma \leq 1$, we define two sets $K^{Y}_{\gamma}(\mathcal{F}), K^{N}_{\beta}(\mathcal{F})$ over $\mathbb{R}^{|\mathcal{F}|kq}$ and show that

they are computable in PSPACE. Will elaborate in next few slides!

Our Classification Theorem for Approximating Finite CSP

For every finite $q, k \in \mathbb{N}$, every $\mathcal{F} \subset \{f : [q]^k \to \{0,1\}\}$, and every $0 \leq \beta < \gamma \leq 1$, we define two sets $K^{Y}_{\gamma}(\mathcal{F})$, $K^{N}_{\beta}(\mathcal{F})$ over $\mathbb{R}^{|\mathcal{F}|kq}$ and show that they are computable in PSPACE. Will elaborate in next few slides!

Classification Theorem sketches in the dynamic setting using $O(\log^3 n)$ space; (ii) If $K^{Y}_{\gamma}(\mathscr{F}) \cap K^{N}_{\beta}(\mathscr{F}) \neq \emptyset$, then $(\gamma - \epsilon, \beta + \epsilon)$ -Max-CSP(\mathscr{F}) by sketching

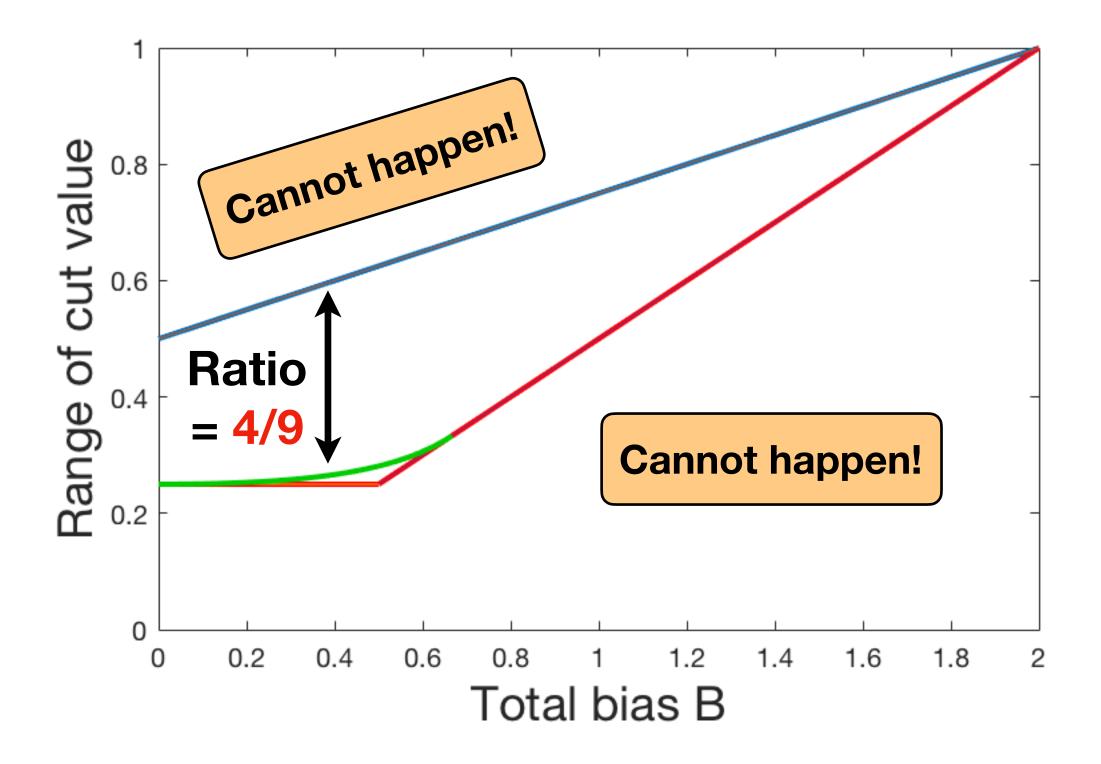
See our paper for more corollaries in some special settings!

(i) If $K^Y_{\gamma}(\mathscr{F}) \cap K^N_{\beta}(\mathscr{F}) = \emptyset$, then (γ, β) -Max-CSP (\mathscr{F}) can be solved by linear

algorithms in the insertion-only setting requires $\Omega(\sqrt{n})$ space $\forall \epsilon > 0$.

Example: Max-DICUT [GVV17, CGV20]

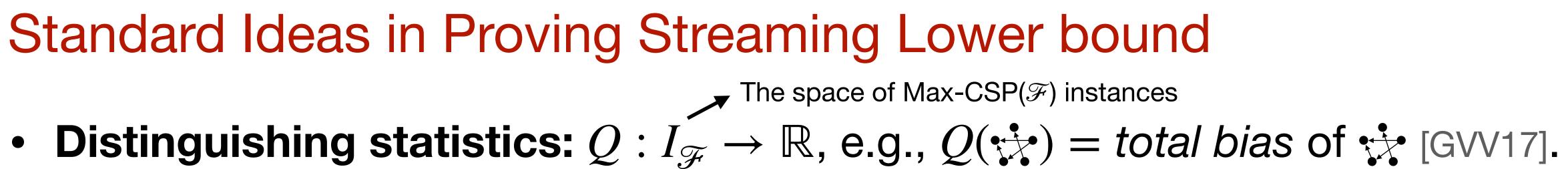
Definition (bias and total bias): bias(v) = in-degree - out-degree and $B = \sum |bias(v)|$



 ℓ_1 norm of the bias vector! Can be estimated using standard steaming tools.

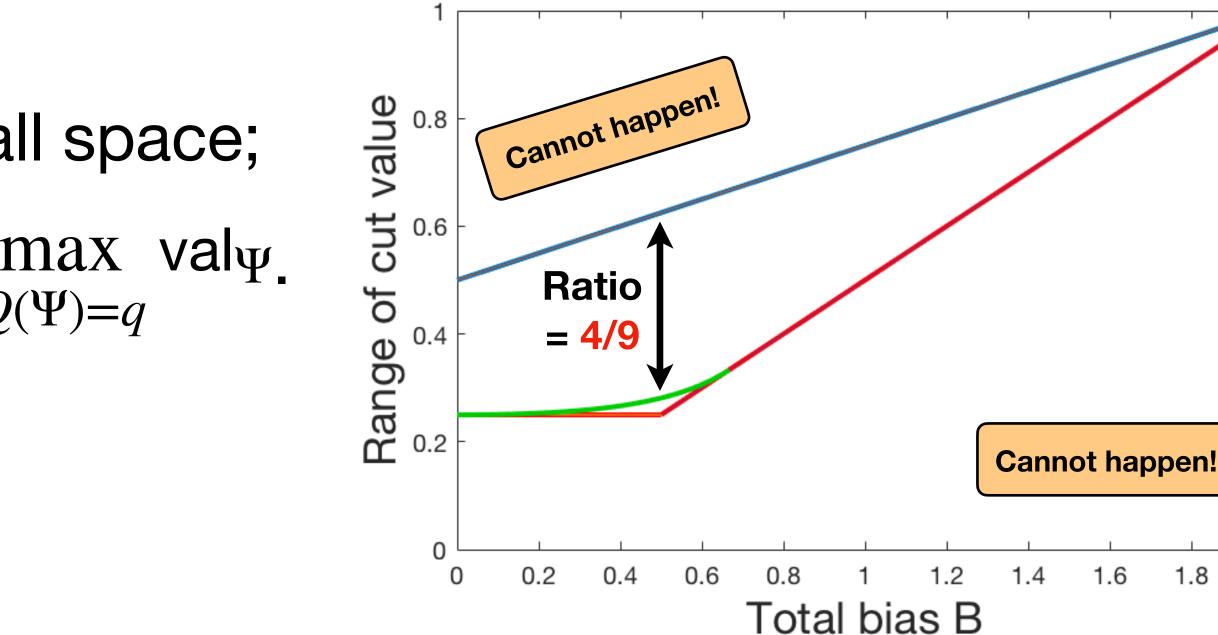
- Blue line: cut value upper bound.
- **Red line**: The cut value of greedy cut.
- Green line: Cut value achieved by random sampling with bias.
- Streaming algorithm: Estimate B and output max {green line, red line}.
- **Ratio**: When B = 2/5, the ratio is 4/9.

Standard Ideas in Proving Streaming Lower bound



Standard Ideas in Proving Streaming Lower bound

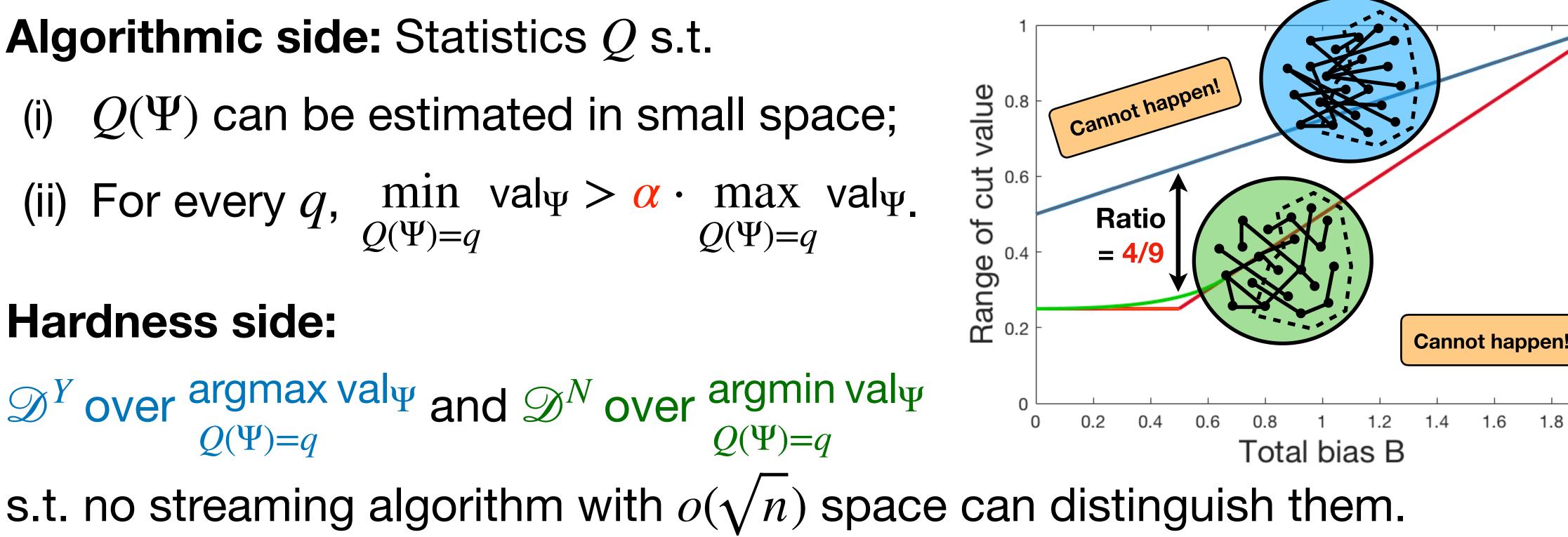
- The space of Max-CSP(\mathscr{F}) instances **Distinguishing statistics:** $Q: I_{\mathscr{F}} \to \mathbb{R}$, e.g., Q(:) = total bias of : [GVV17].
- Algorithmic side: Statistics Q s.t. (i) $Q(\Psi)$ can be estimated in small space;
 - (ii) For every q, $\min_{Q(\Psi)=q} \operatorname{val}_{\Psi} > \alpha \cdot \max_{Q(\Psi)=q} \operatorname{val}_{\Psi}$.



Standard Ideas in Proving Streaming Lower bound

- The space of Max-CSP(\mathscr{F}) instances **Distinguishing statistics:** $Q: I_{\mathscr{F}} \to \mathbb{R}$, e.g., $Q(\mathbf{G}) = total bias$ of $\mathbf{G} \to \mathbf{G}$.
- Algorithmic side: Statistics Q s.t. (i) $Q(\Psi)$ can be estimated in small space; (ii) For every q, $\min_{Q(\Psi)=q} \operatorname{val}_{\Psi} > \alpha \cdot \max_{Q(\Psi)=q} \operatorname{val}_{\Psi}$.
- Hardness side:

 \mathscr{D}^{Y} over $\underset{Q(\Psi)=q}{\operatorname{argmax}}$ val $_{\Psi}$ and \mathscr{D}^{N} over $\underset{Q(\Psi)=q}{\operatorname{argmin}}$ val $_{\Psi}$



Technical challenges: Understand the extreme instances of the statistics.

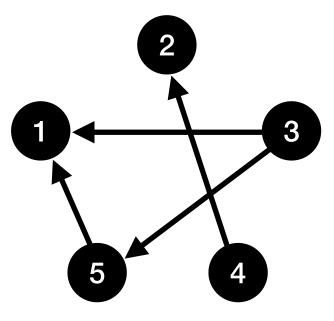
Q: How to systematically find a desirable distinguishing statistics?

A: Unclear! Previous works used different "combinatorial properties".

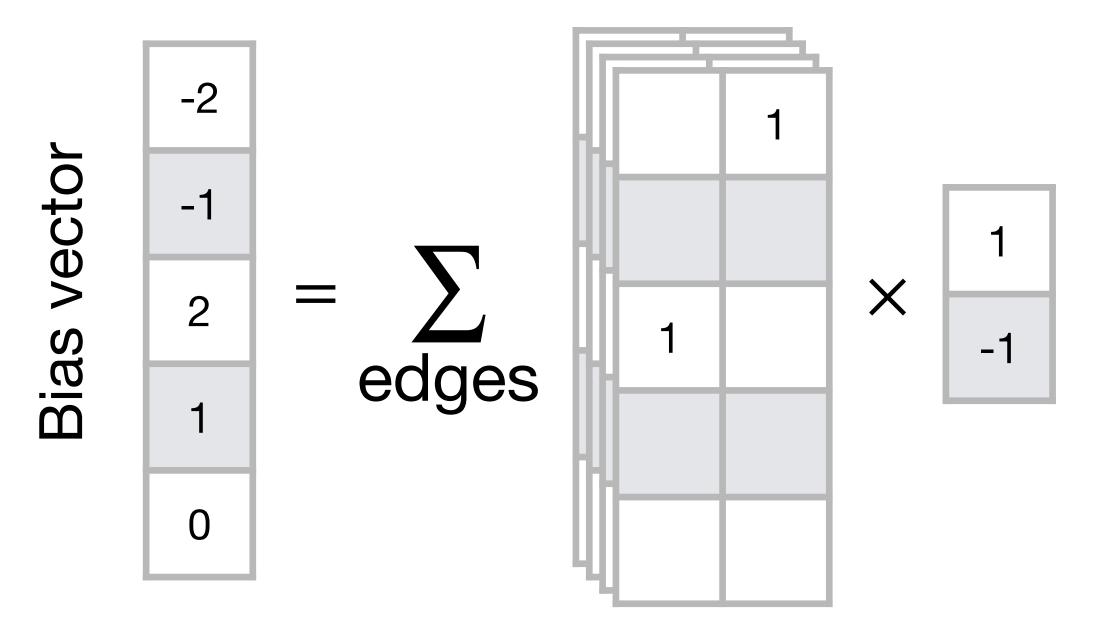
Q: How to systematically find a desirable distinguishing statistics?

A: Unclear! Previous works used different "combinatorial properties".

Key idea 1: Generalize bias to certain "analytical properties".



 ℓ_1 norm of bias vector can be estimated in $O(\log n)$ space!

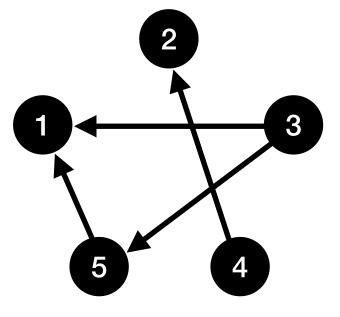


Q: How to systematically find a desirable distinguishing statistics?

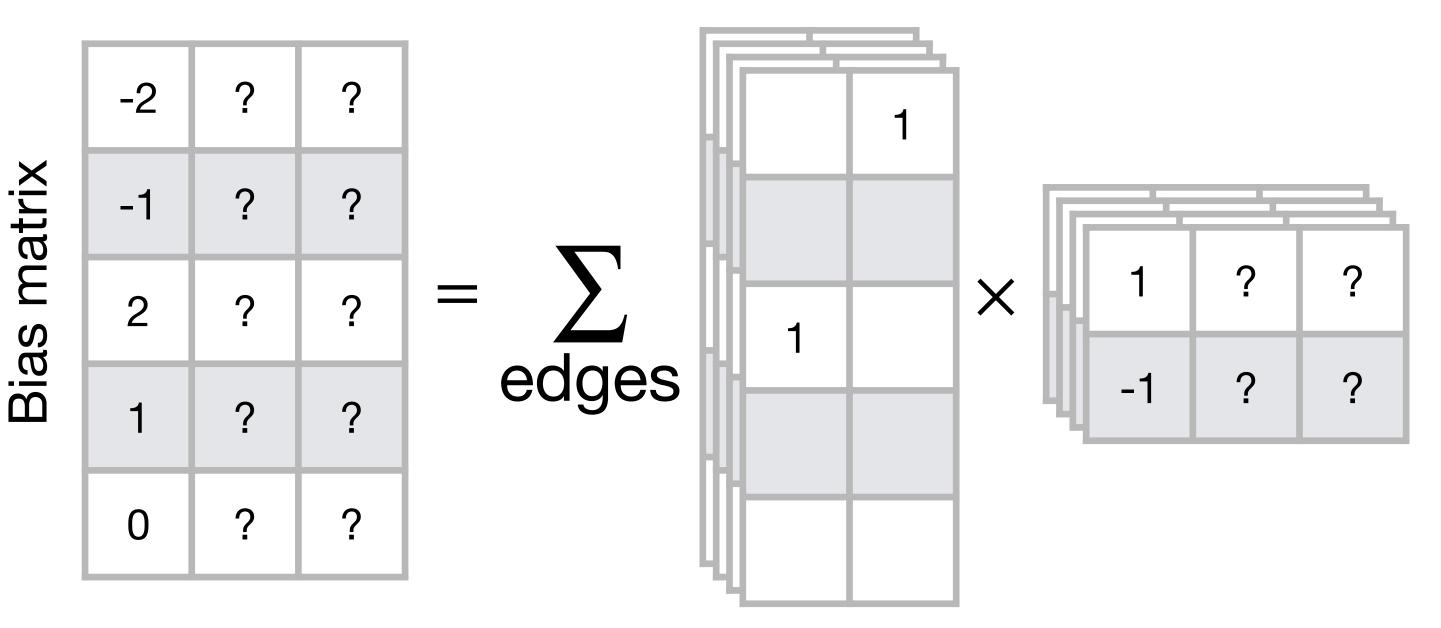
A: Unclear! Previous works used different "combinatorial properties".

Bias

Key idea 1: Generalize bias to certain "analytical properties".



 $\ell_{p,q}$ norm of bias vector can be estimated in $O(\log^{O(1)} n)$ space!



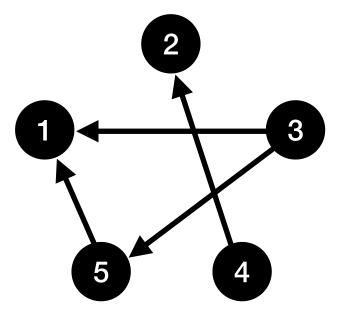
Q: How to systematically find a desirable distinguishing statistics?

A: Unclear! Previous works used different "combinatorial properties".

matrix

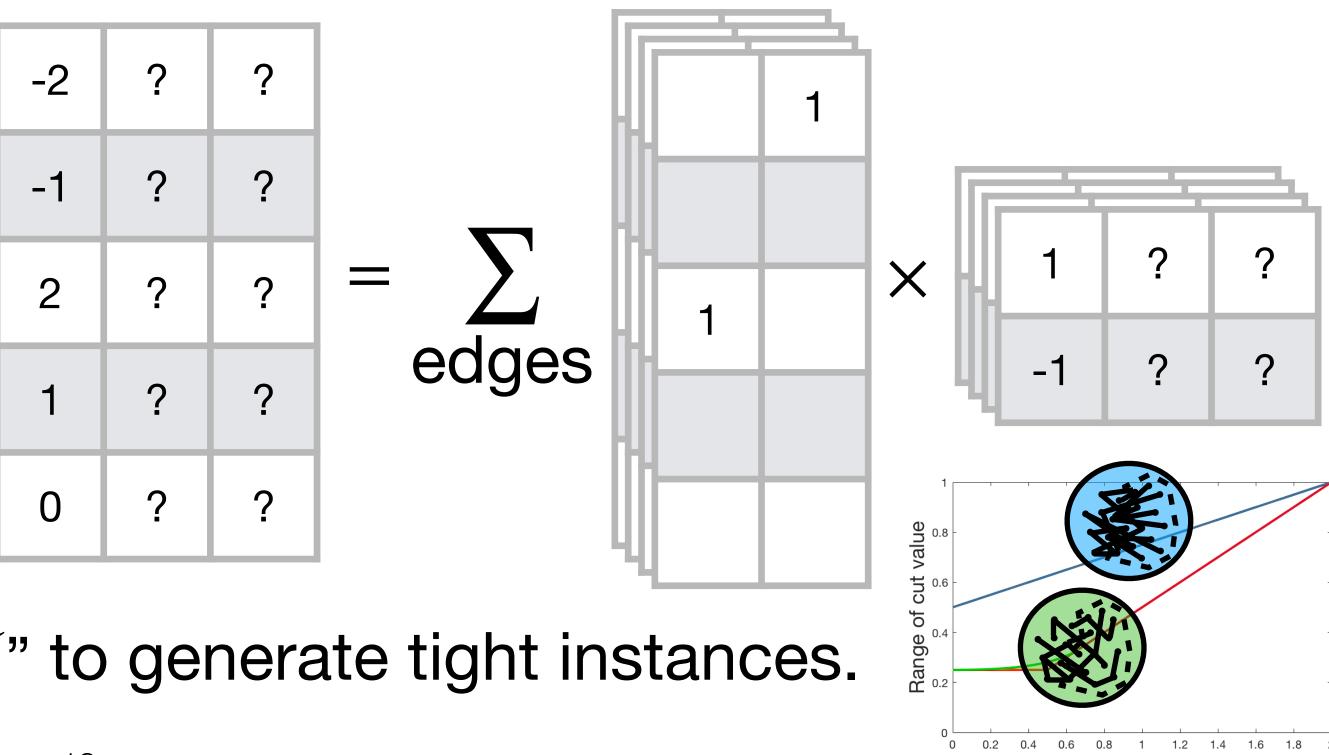
Bias

Key idea 1: Generalize bias to certain "analytical properties".



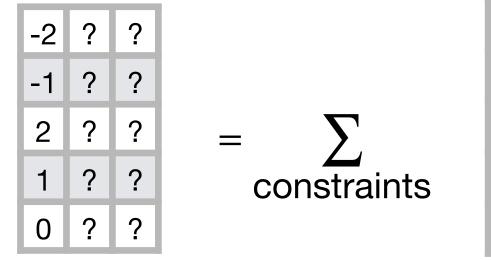
 $\ell_{p,q}$ norm of bias vector can be estimated in $O(\log^{O(1)} n)$ space!

Key idea 2: Use the "geometry of \mathcal{F} " to generate tight instances.

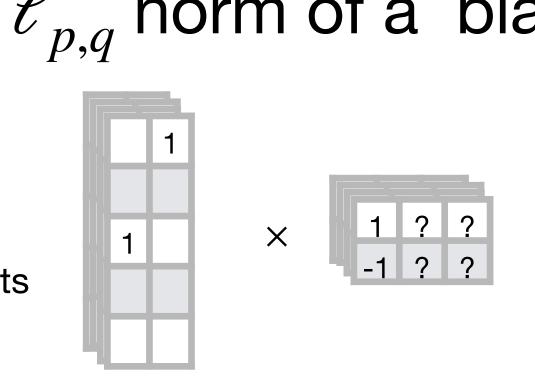


Key idea 1: Generalizing bias to the $\ell_{p,q}$ norm of a bias matrix.

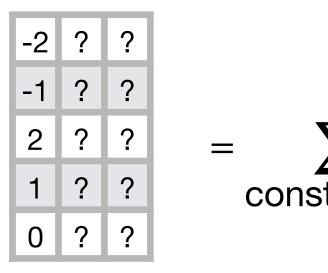
Bias matrix



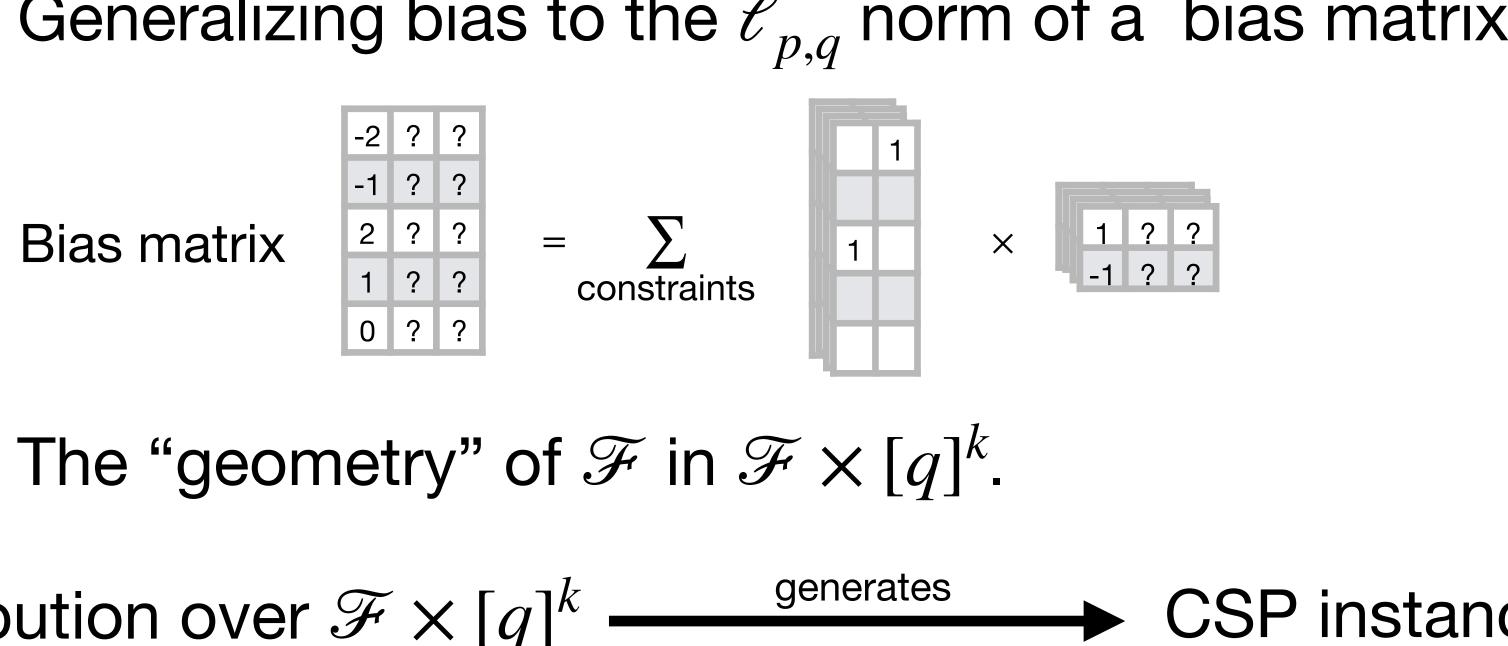
Key idea 2: The "geometry" of \mathcal{F} in $\mathcal{F} \times [q]^k$.



Key idea 1: Generalizing bias to the $\ell_{p,q}$ norm of a bias matrix.

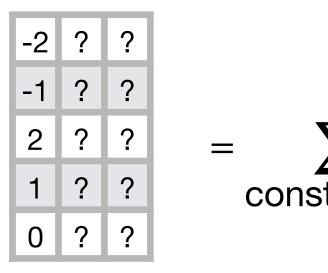


Key idea 2: The "geometry" of \mathscr{F} in $\mathscr{F} \times [q]^k$. Distribution over $\mathscr{F} \times [q]^k$ — GSP instances

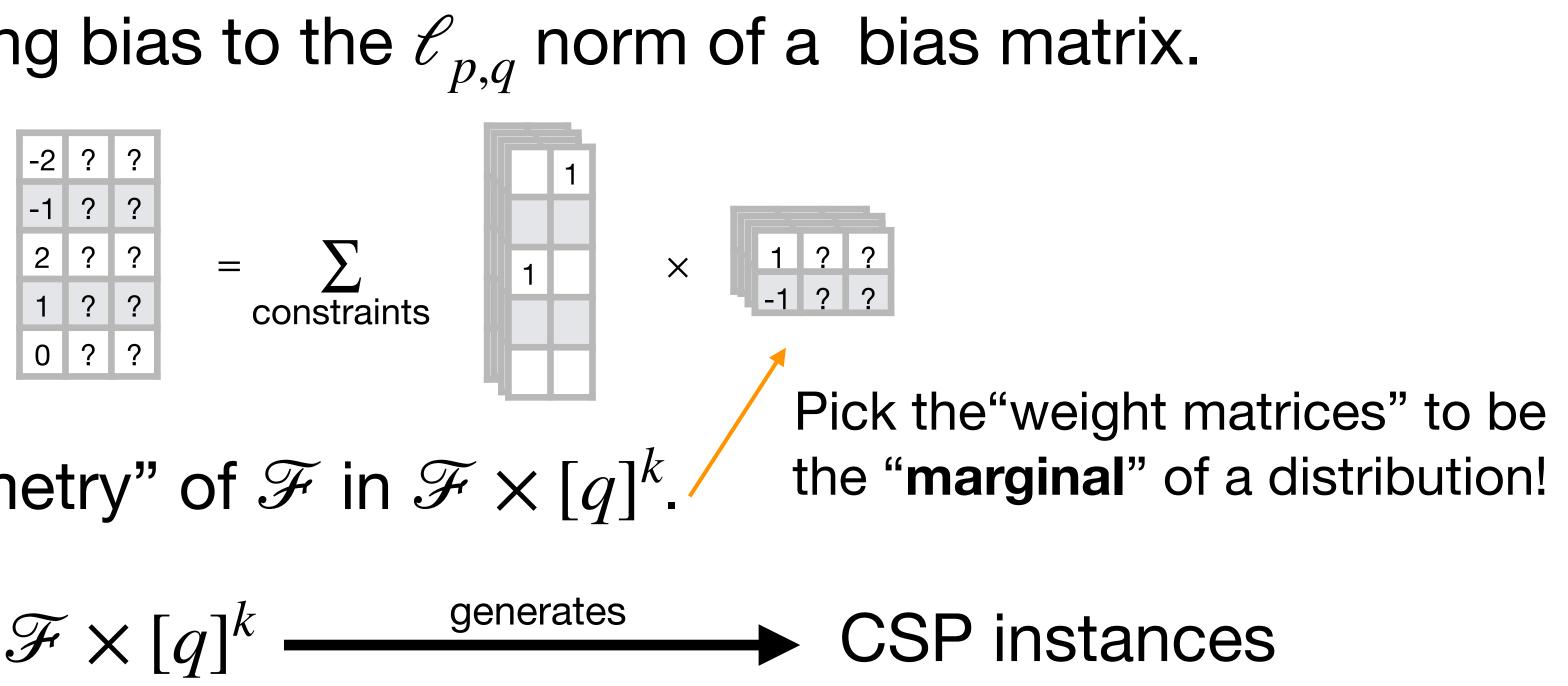


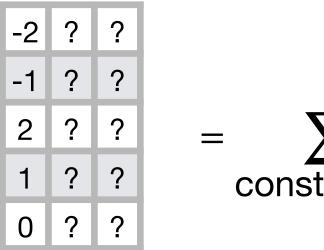
Key idea 1: Generalizing bias to the $\ell_{p,q}$ norm of a bias matrix.

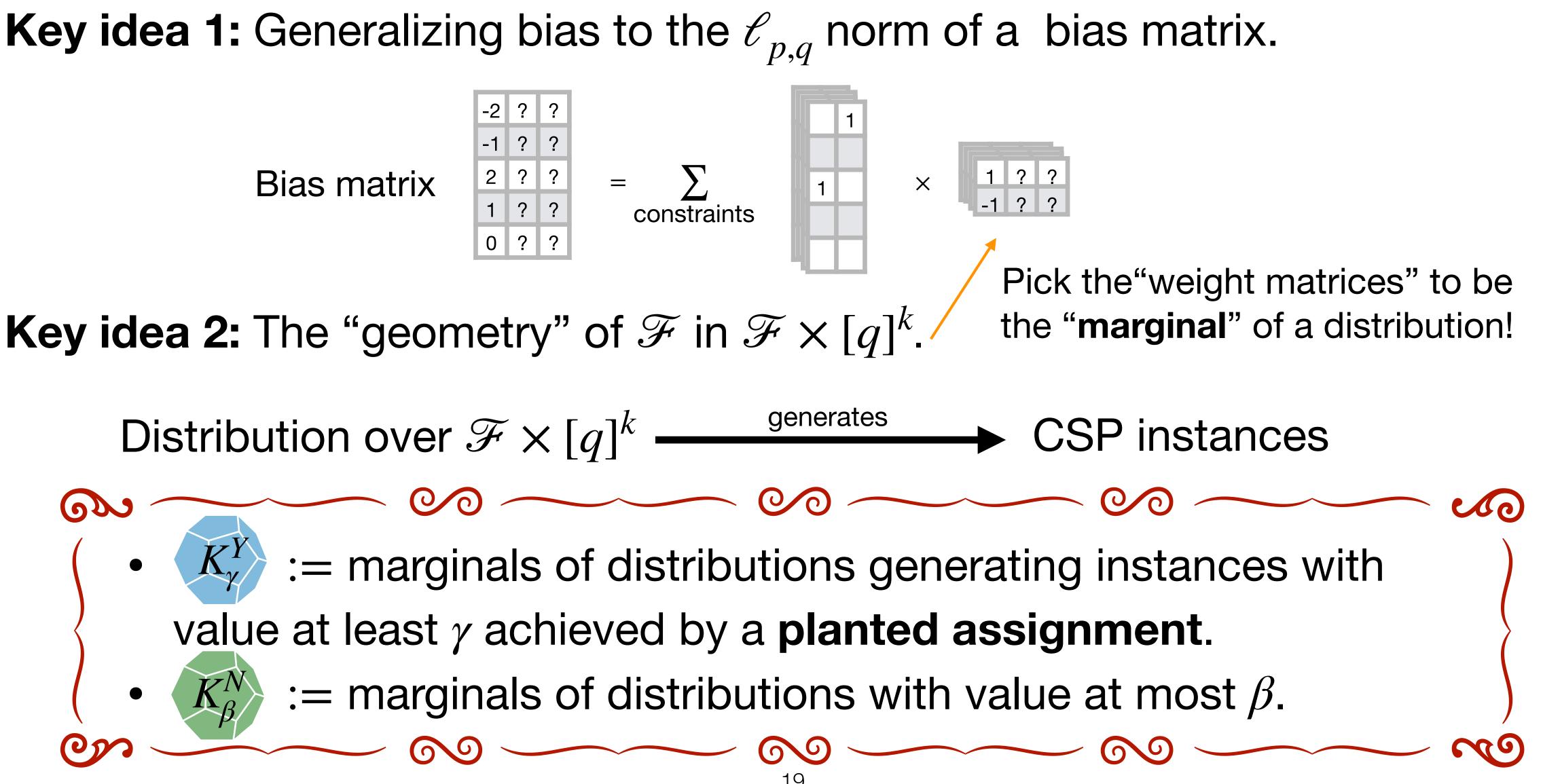
Bias matrix



Key idea 2: The "geometry" of \mathscr{F} in $\mathscr{F} \times [q]^k$. Distribution over $\mathcal{F} \times [q]^k$ — GSP instances

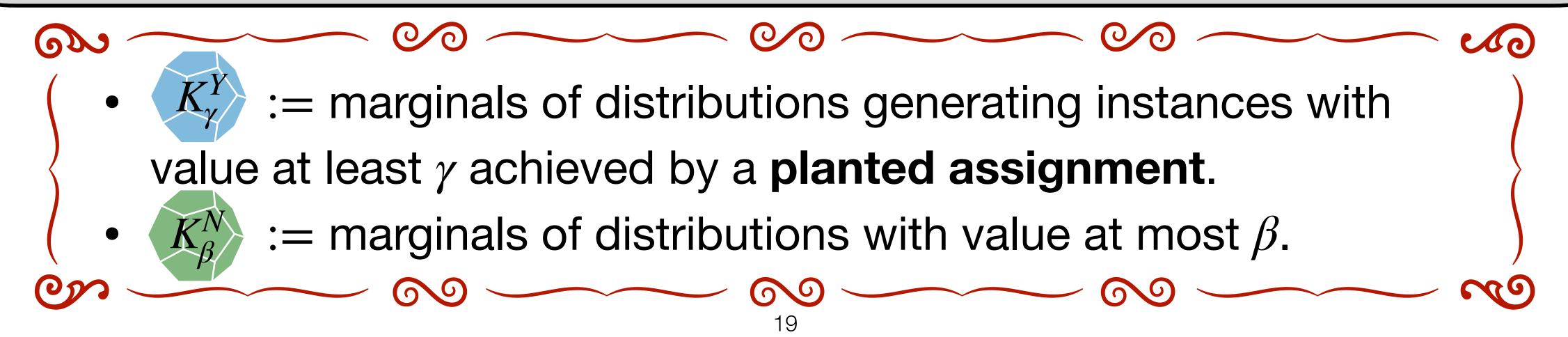






Classification Theorem

(i) sketches in the dynamic setting using $O(\log^3 n)$ space; (ii) If $K^{Y}_{\gamma}(\mathscr{F}) \cap K^{N}_{\beta}(\mathscr{F}) \neq \emptyset$, then $(\gamma - \epsilon, \beta + \epsilon)$ -Max-CSP(\mathscr{F}) by sketching



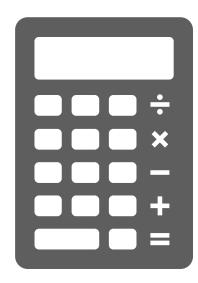
If $K^{Y}_{\gamma}(\mathscr{F}) \cap K^{N}_{\beta}(\mathscr{F}) = \emptyset$, then (γ, β) -Max-CSP (\mathscr{F}) can be solved by linear

algorithms in the insertion-only setting requires $\Omega(\sqrt{n})$ space $\forall \epsilon > 0$.

Hardness $K^{Y}_{\gamma}(\mathcal{F}) \cap K^{N}_{\beta}(\mathcal{F}) \neq \emptyset \Rightarrow \text{Hard!}$

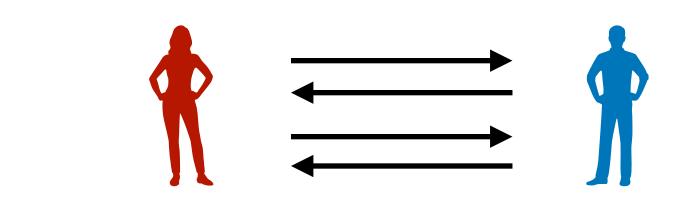
Streaming Lower Bounds via Communication Complexity

- Unconditional lower bounds from communication games.
- High-level idea:



Streaming Algorithm

- send the "configuration" as the message.



Communication Protocol

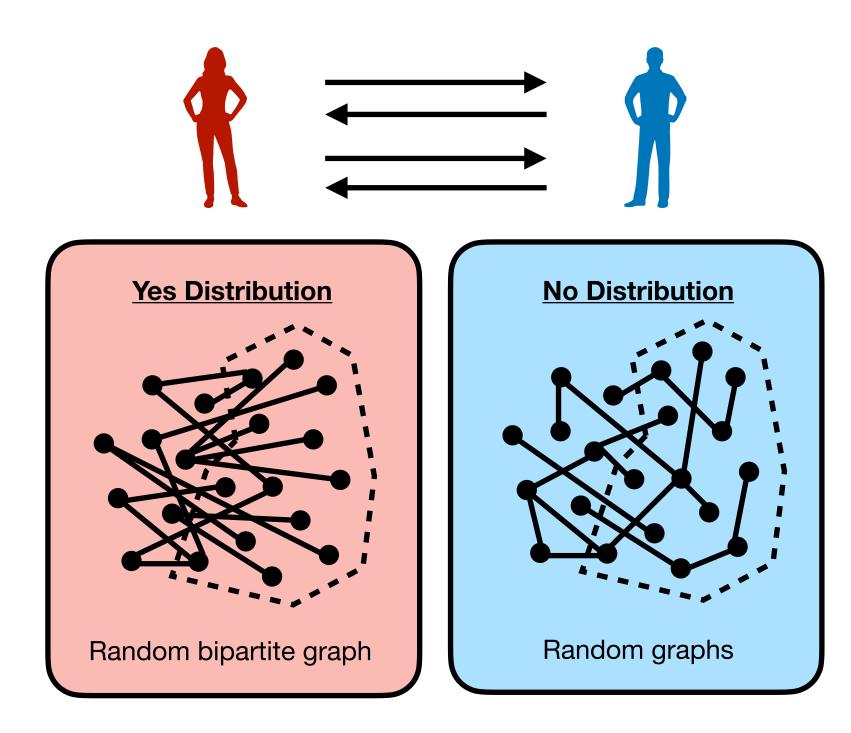
• Usage: Alice and Bob insert some inputs to the streaming algorithm and

• Space complexity of streaming algorithm \geq communication complexity.

A Bird-Eye View of Our Lower Bound Proof

A sequence of reductions from communication games to streaming problems!

Communication Games



Generalize to k > 2

Boolean Hidden Matching problem [GKK+09]

Streaming CSPs

$$\Psi = \left\{ (f_i, S_i) \right\}_{i \in [m]}$$

Produce CSP constraints

Simultaneous Signal Detection problem

Increase the # of (hyper)edges

Signal Detection problem

Generalize to q > 2 & matching marginals

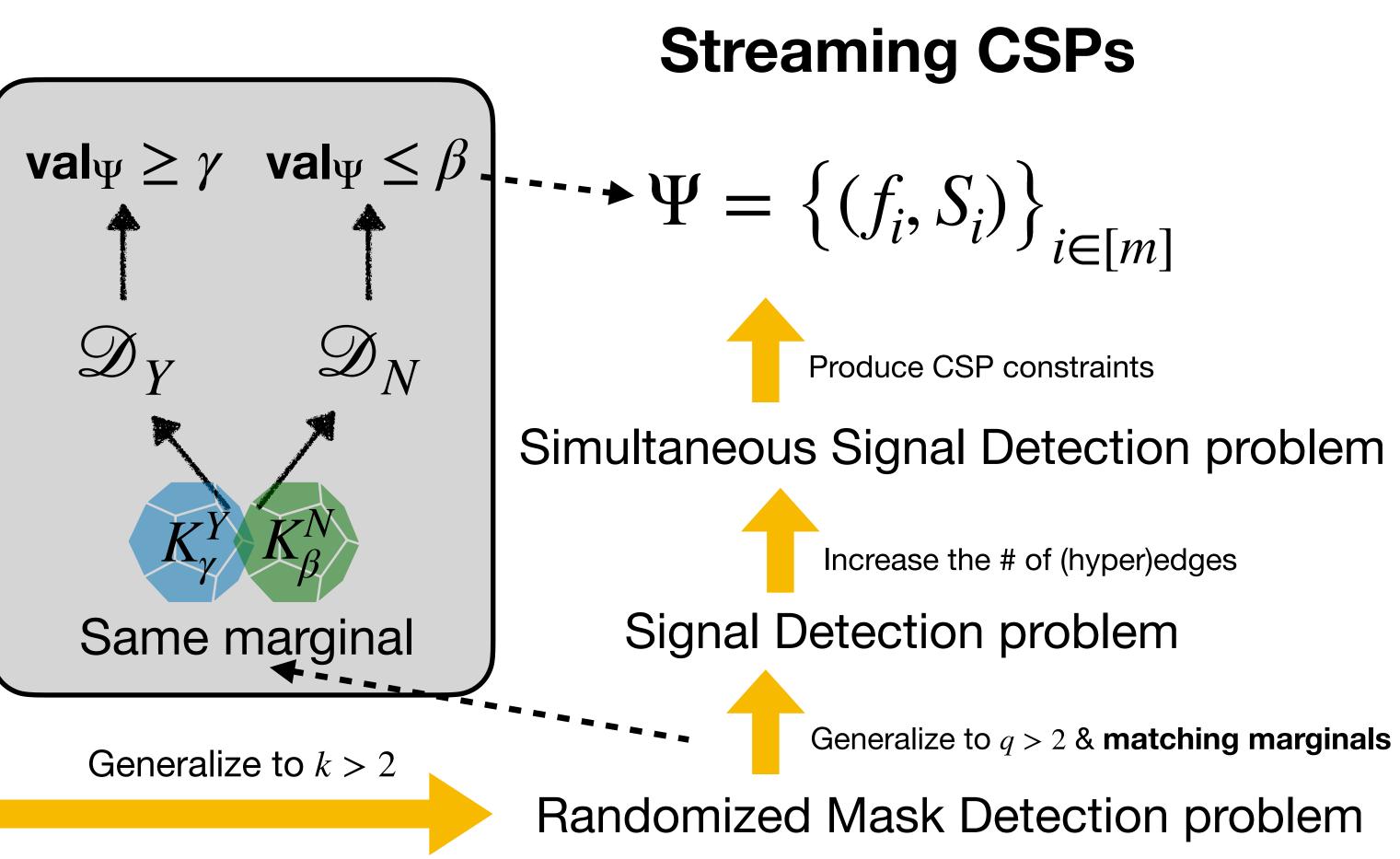
Randomized Mask Detection problem

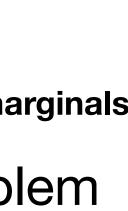
A Bird-Eye View of Our Lower Bound Proof

A sequence of reductions from communication games to streaming problems!

Communication Games \mathcal{D}_V **Yes Distribution No Distribution** Random graphs Random bipartite graph

Boolean Hidden Matching problem [GKK+09]





Algorithm $K^{Y}_{\gamma}(\mathscr{F}) \cap K^{N}_{\beta}(\mathscr{F}) = \emptyset \Rightarrow \exists \text{ Algorithm!}$

Key Ideas and a Sketch of the Analysis for our Algorithm

Recall: We generalize the bias vector of Max-DICUT to bias matrix.

Key Ideas and a Sketch of the Analysis for our Algorithm

- **Recall:** We generalize the bias vector of Max-DICUT to bias matrix.
- **Observation:** K^Y_{γ} and K^N_{β} are convex $\Rightarrow \exists$ separating vector $\lambda \in \mathbb{R}^{|\mathcal{F}|kq}$.

Key Ideas and a Sketch of the Analysis for our Algorithm

- **Recall:** We generalize the bias vector of Max-DICUT to bias matrix.
- **Observation:** K^Y_{γ} and K^N_{β} are convex $\Rightarrow \exists$ separating vector $\lambda \in \mathbb{R}^{|\mathcal{F}|kq}$.





• The $\ell_{1,\infty}$ norm of the bias matrix using λ is a good distinguishing statistics!

Desired properties of $Q(\Psi)$:

(2) Take the ℓ_1 norm

- (i) $Q(\Psi)$ can be estimated in $O(\log^3 n)$ space;
 - Tool from the streaming literature [AKO11].
- (ii) For every q, $\min_{Q(\Psi)=q} \operatorname{val}_{\Psi} > \alpha \cdot \max_{Q(\Psi)=q} \operatorname{val}_{\Psi}$.
 - A direct probability analysis utilizing the structure of $S_{\gamma}^{Y}, S_{\beta}^{N}$.

This might look like coming out of nowhere... but it's actually a very natural choice if knowing the previous analysis!

Conclusion & Future Directions

Classification Theorem

For every finite $q, k \in \mathbb{N}$, every $\mathcal{F} \subset \{f : [q]^k \to \{0,1\}\}$, and every $0 \le \beta < \gamma \le 1$, the following hold. sketches in the dynamic setting using $O(\log^3 n)$ space;

communication games, (ii) design a sequence of cool reductions.

- (i) If $K^Y_{\gamma}(\mathscr{F}) \cap K^N_{\beta}(\mathscr{F}) = \emptyset$, then (γ, β) -Max-CSP (\mathscr{F}) can be solved by linear (ii) If $K^{Y}_{\gamma}(\mathscr{F}) \cap K^{N}_{\beta}(\mathscr{F}) \neq \emptyset$, then $(\gamma - \epsilon, \beta + \epsilon)$ -Max-CSP(\mathscr{F}) by sketching algorithms in the insertion-only setting requires $\Omega(\sqrt{n})$ space $\forall \epsilon > 0$.
- Main technical contributions: (i) Identifying the right convex sets and the

What I Skipped

- How to establish the lower bound for uniform marginal case?
 - The standard Fourier analysis boils down to a combinatorial counting problem.

How does the polarization technique work?

For each marginal μ , there's a polarized distribution \mathcal{D}_{μ} s.t. for every \mathcal{D} with $\mu(\mathcal{D}) = \mu$, there's a finite path a indistinguishable distributions connecting \mathcal{D} and \mathcal{D}_{μ} .

How to increase the # of (hyper)edges?

former can only handle uniform marginal and the latter only gives lower bound against sketching algorithms.

Why the lower bounds only hold for sketching algorithms?

- when the marginal is not uniform! New communication game and idea are needed.
- The analysis of our linear sketches?
 - It's mainly standard probabilistic analysis and heavily relying on our good choices of the convex sets.

Examples of the instantiation of our classification theorem?

See our paper for examples on Max-DICUT, Max-UG, and Max-Coloring!

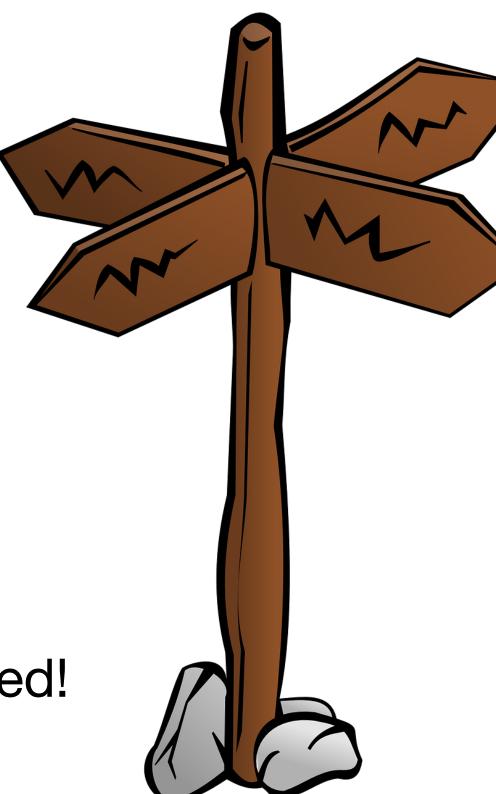
We only know how to do this via data processing inequality or through simultaneous communication model where the

In fact, the CSP distributions generated by SD problem is distinguishable by a streaming algorithm with logarithmic space

Future Directions

Multi-pass lower bound

- Closer to bounded space model
- Technically challenging



Insertion-only + general streaming lower bound

- New communication game is needed!
- Any possible separation!?

Linear space lower bound

- Full classification in linear space?
- Separation from \sqrt{n} space?

Applications & Instantiations of our classification theorem

- Simplify our characterization in interesting cases?
- The communication games could be of interest in other area?

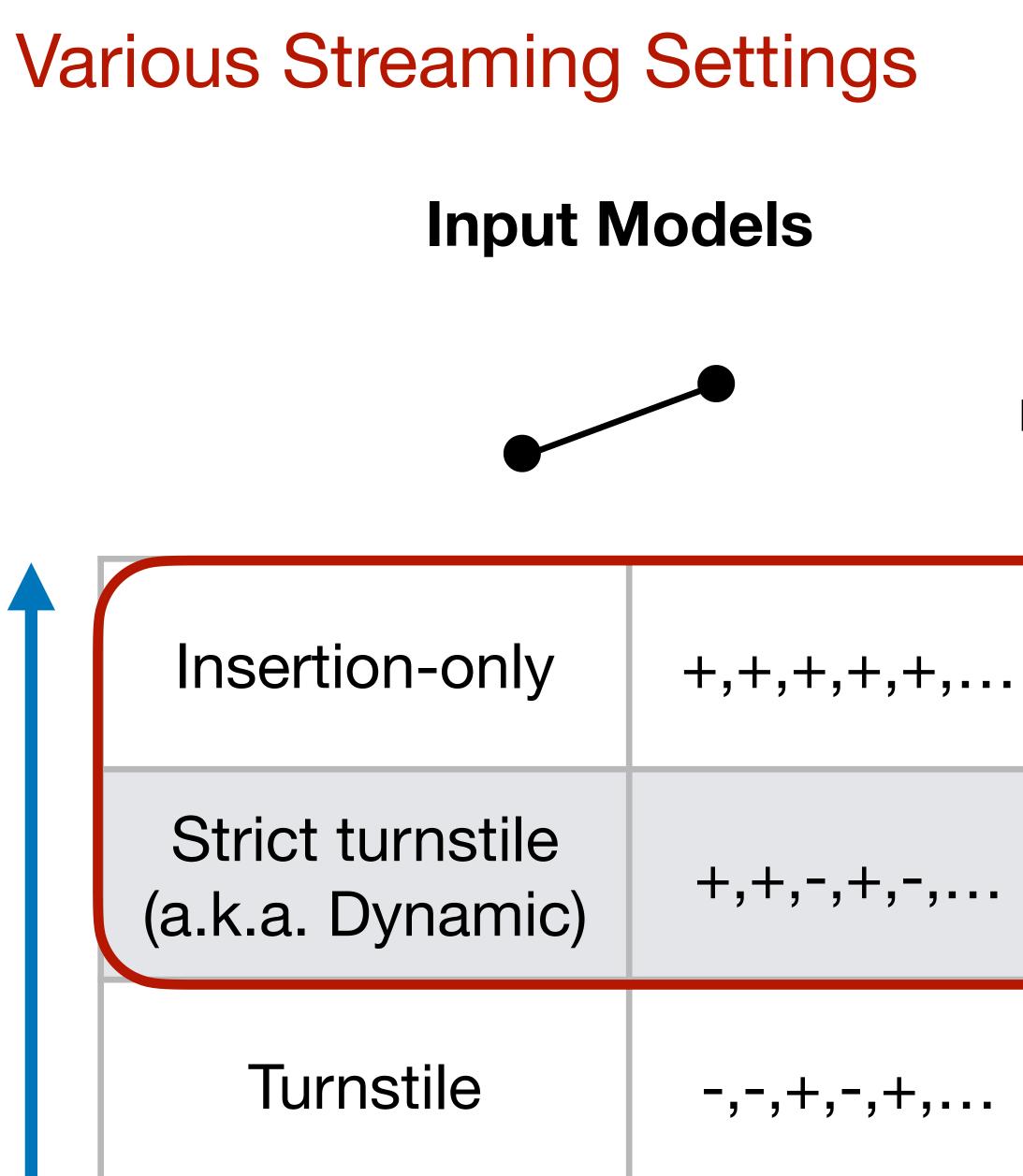
Different streaming models

More on the **convex sets**

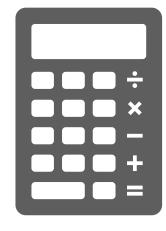
Appendix

More on the hardness side

Different Streaming Models



Streaming Models



	Linear sketches	M(x) (with $M(x \circ y) = M(x) + M(y)$
	Sketches	$C(x)$ (with $C(x \circ y) = f(C(x), C(y))$
	Streaming algorithm	Anything!

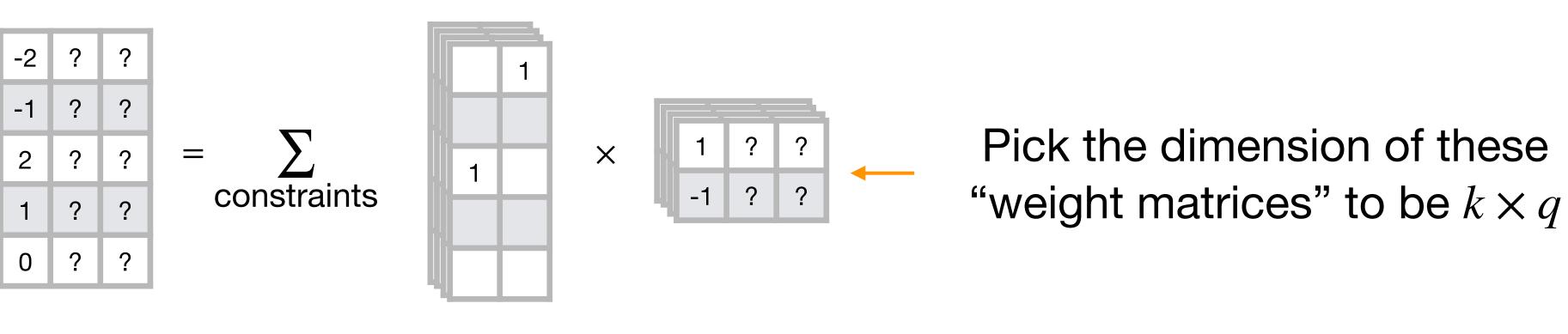


More on the Convex Sets

Hardness Side: Connecting Bias Matrix to Constraint Space

The intuition of using constraint space came from the hardness proof which will be explained later...

Constraint space: $\mathcal{F} \times [q]^k$ containing tuples of the form (f, \mathbf{a}) . lacksquare



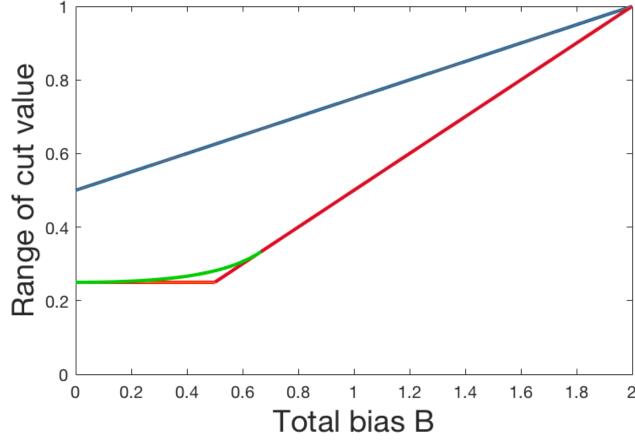
- An assignment $\mathbf{b} \in [q]^{kq}$ has value val (f, \mathbf{a})
 - (Planted assignment) Let $\mathbb{I} \in [q]^{kq}$ with \mathbb{I}_{q}
 - (Random assignment) Sample b with $b_{i,\sigma}$
- Yes/No distributions over the constraint space: \bullet
 - $S^{Y}_{\gamma}(\mathscr{F}) := \left\{ \mathscr{D} \mid \mathbb{E}_{(f,\mathbf{a}\sim\mathscr{D})}[\operatorname{val}(f,\mathbf{a})(\mathbb{I})] \geq \gamma \right\}.$ $S^{N}_{\beta}(\mathscr{F}) := \left\{ \mathscr{D} \mid \mathbb{E}_{(f,\mathbf{a})\sim\mathscr{D}}[\mathbb{E}_{\mathbf{b},b_{i,\sigma}\sim\mathscr{P}_{\sigma}}[\operatorname{val}(f,\mathbf{a})(\mathbf{b})] \in \mathcal{F}_{\mathcal{F}}(f,\mathbf{a}) \in \mathcal{F}_{\mathcal{F}}(f,\mathbf{a}) \in \mathcal{F}_{\mathcal{F}}(f,\mathbf{a}) \right\}$

$$(\mathbf{b}) = f(b_{1,a_1}, b_{2,a_2}, \dots, b_{k,a_k})$$

$$\sigma_{\sigma} = \sigma_{\sigma}$$

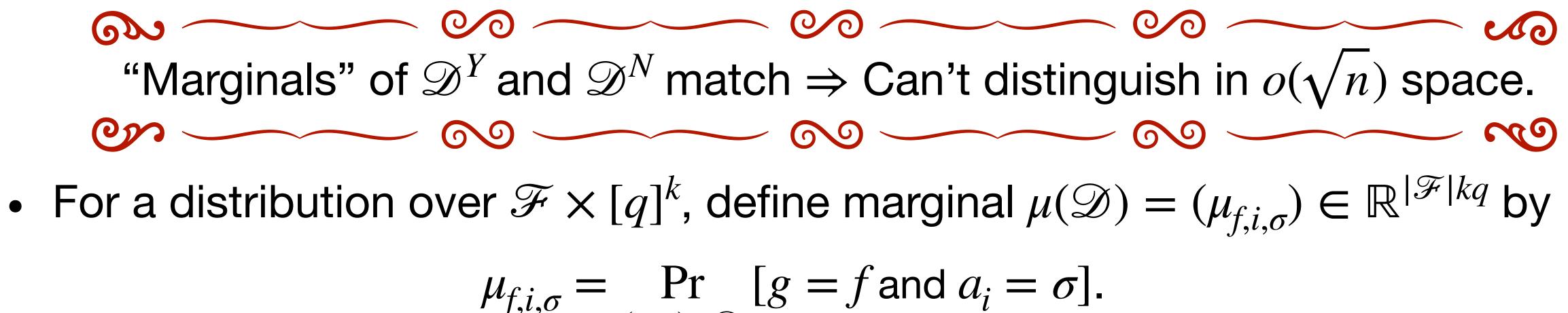
 $\sigma_{\sigma} \sim \mathscr{P}_{\sigma}$ for every \mathscr{P}_{σ} over $[q]_{\sigma}$

$$\mathbf{b})]] \leq \beta, \forall \mathscr{P}_{\sigma} \Big\}.$$



- Use the Yes/No distributions $\mathscr{D}^Y \& \mathscr{D}^N$ to generate boundary instances.
- Key hardness idea:

$$\mu_{f,i,\sigma} = \Pr_{(g,\mathbf{a})\sim\mathscr{D}} \left[-K_{\gamma}^{Y}(\mathscr{F}) := \left\{ \mu(\mathscr{D}) \mid \mathscr{D} \in S_{\gamma}^{Y}(\mathscr{F}) \right\}. \right]$$
$$-K_{\beta}^{N}(\mathscr{F}) := \left\{ \mu(\mathscr{D}) \mid \mathscr{D} \in S_{\beta}^{N}(\mathscr{F}) \right\}.$$



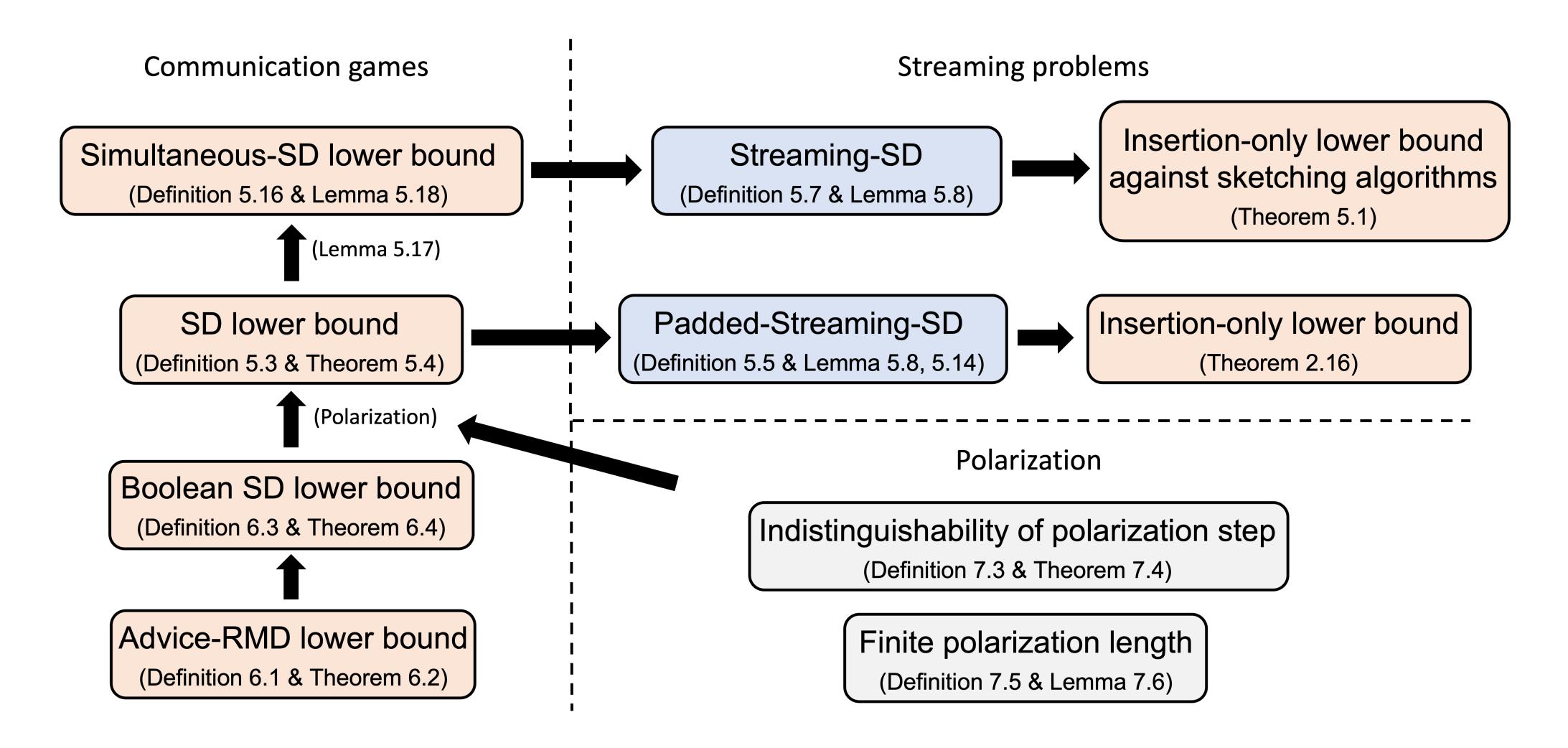
Classification Theorem

- (i) If $K^Y_{\gamma}(\mathscr{F}) \cap K^N_{\beta}(\mathscr{F}) = \emptyset$, then (γ, β) -Max-CSP(\mathscr{F}) can be solved by linear sketches in the dynamic setting using $O(\log^3 n)$ space;
- (ii) If $K^{Y}_{\gamma}(\mathcal{F}) \cap K^{N}_{\beta}(\mathcal{F}) \neq \emptyset$, then $(\gamma \epsilon, \beta + \epsilon)$ -Max-CSP(\mathcal{F}) by sketching algorithms in the insertion-only setting requires $\Omega(\sqrt{n})$ space $\forall \epsilon > 0$.

More on the Hardness Side

Structure of the Our Lower Bound Proof

A sequence of reductions from communication games to streaming problems!



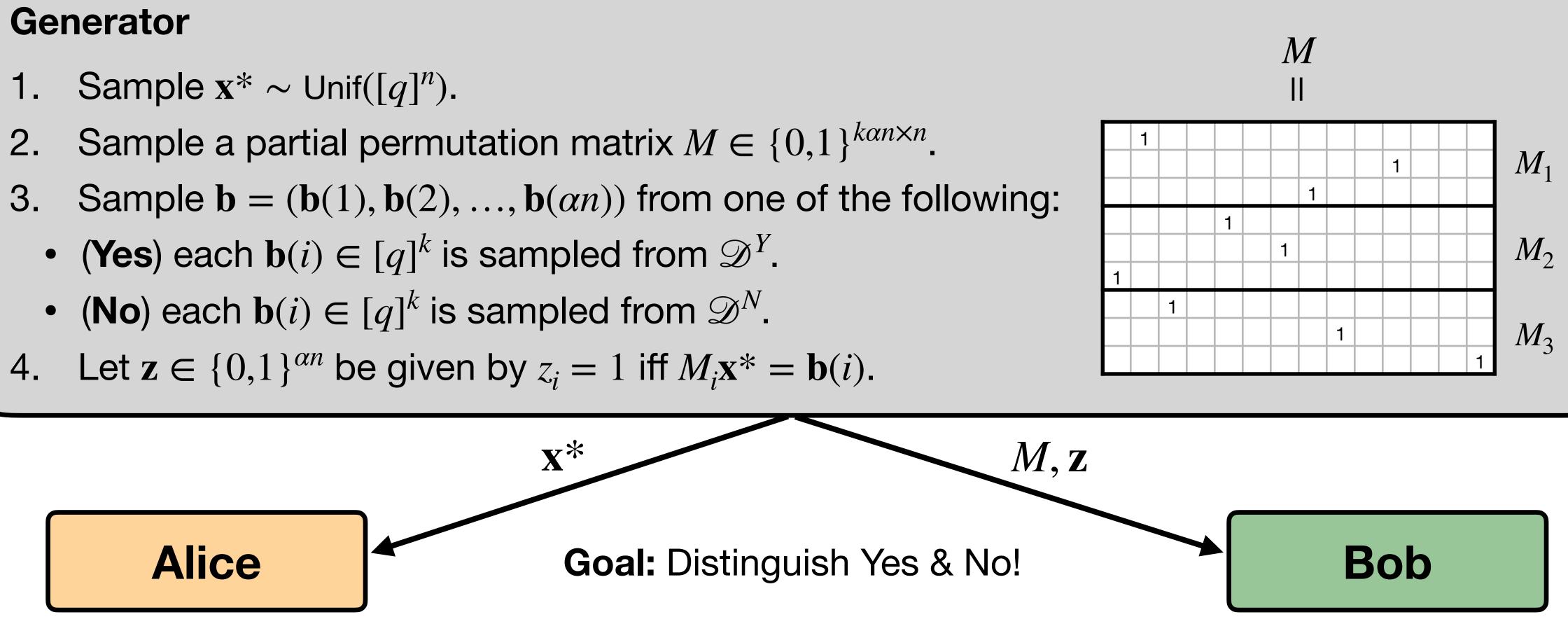
* To make the reductions work, we work on the "advice" version of the games.

$(\mathcal{D}^{Y}, \mathcal{D}^{N})$ -Signal Detection (SD) Problem

How communication games relate to streaming CSPs!

Let $n, k, q \in \mathbb{N}$, $\alpha \in (0,1)$ small enough, $\mathcal{D}^Y, \mathcal{D}^N$ distributions over $[q]^k$.

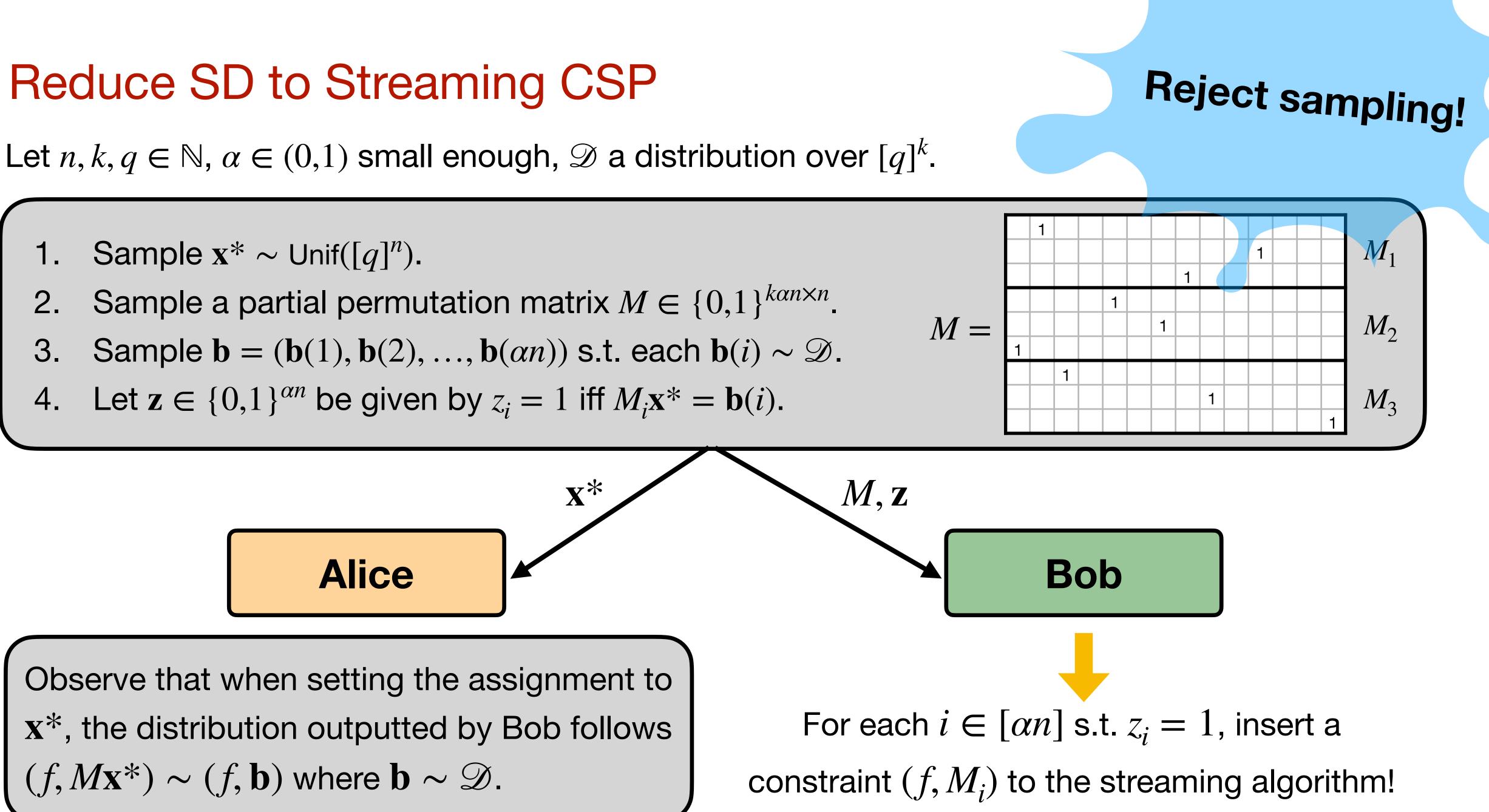
Generator



37 * To make the reductions work, we work on the "advice" version of the games.

Reduce SD to Streaming CSP

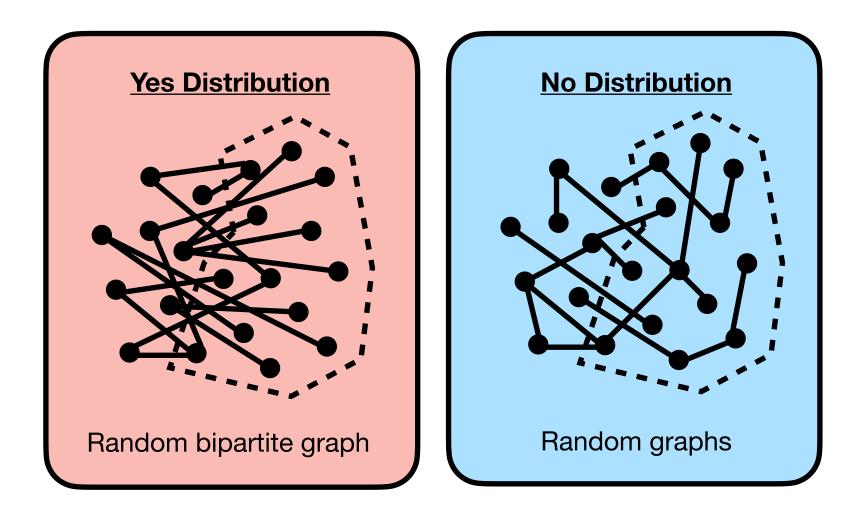
- Sample $\mathbf{x}^* \sim \text{Unif}([q]^n)$.
- 2.
- 3.
- Let $\mathbf{z} \in \{0,1\}^{\alpha n}$ be given by $z_i = 1$ iff $M_i \mathbf{x}^* = \mathbf{b}(i)$. 4.



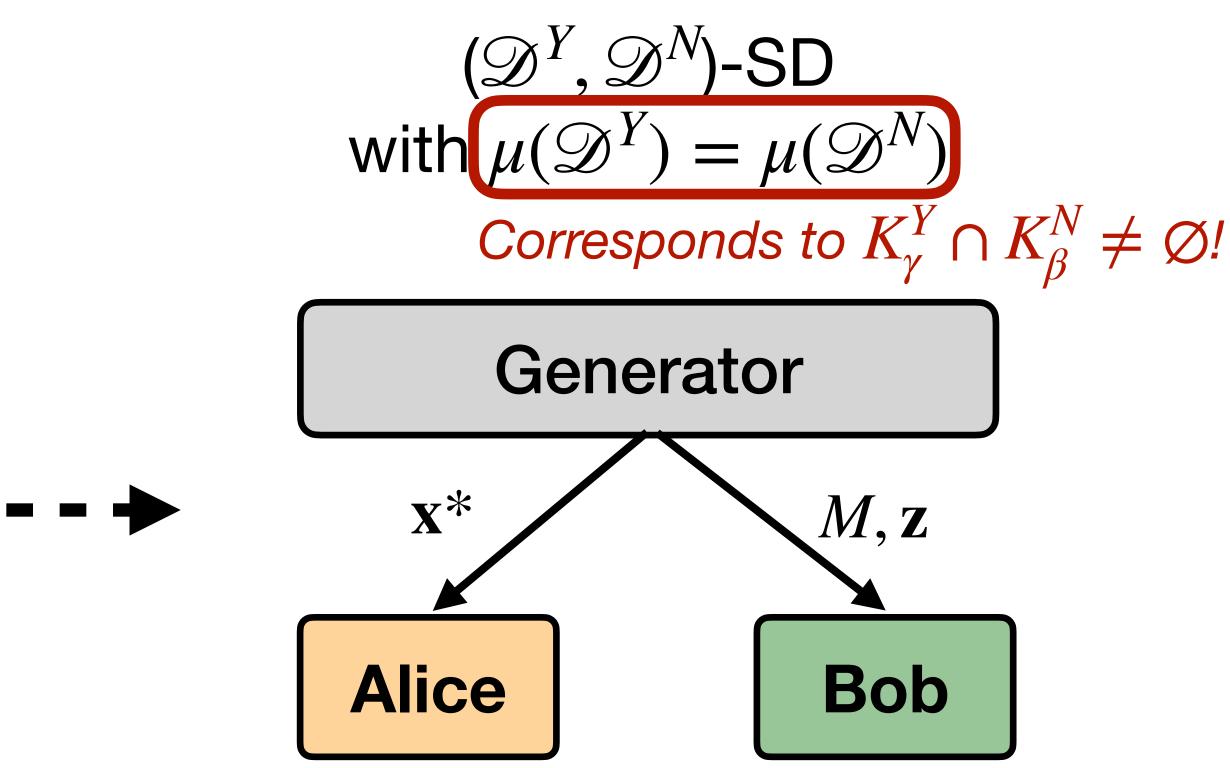
Observe that when setting the assignment to \mathbf{x}^* , the distribution outputted by Bob follows $(f, M\mathbf{x}^*) \sim (f, \mathbf{b})$ where $\mathbf{b} \sim \mathcal{D}$.

When Are the Communication Games Hard?

Boolean Hidden Matching problem [GKK+09]



The game is hard when both distributions have uniform marginal. (Analyzing the total variation distance via Fourier analysis.)



We develop a polarization technique for reduction between communication games while keeping the marginals of the two distributions the same

