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Motivation
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Unconditional hardness of approximating 
constraint satisfaction problems (CSPs) in the 

streaming model

We characterize optimal approx. ratio for all finite CSPs                       !in a weaker setting…

Instead of NP-hardness or UG-hardness

Capture many common computation problems

Practically interesting and theoretically nice



Basic Definitions
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Max-CUT as a CSP 

An undirected graph G

• Variables: xi = 1 ⇔ i ∈ T
• Constraints: (i, j) ∈ E ⇒ ( ⊕ , {i, j})
• Value: max cut valuevalΨ =

• Variables:  taking values in  (an alphabet set of finite size). x1, x2, …, xn Σ

• Constraints:  where  and .( f, S) f ∈ ℱ ⊂ {g : Σk → {0,1}} S ⊂ [n]

• Input: , number of constraints = .Ψ = (( fi, Si))i∈[m] m

• Output: The value of . Namely, the largest # of satisfied constraints.Ψ
Formally, define .valΨ := max

σ:[n]→Σ
{( f, S) ∈ Ψ : f(σ(xS)) = 1} ∈ [0,m]



Constraint Satisfaction Problem (CSP)

• CSP is ubiquitous and has been extremely well-studied!


• Some CSPs are easy and some are hard to solve exactly. 

 

 

 

 

• What about solving CSP approximately?
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UG

DNF 3OR
CNF

3LIN

Schaefer’s  
Dichotomy Theorem

Boolean CSP is either

    or               .



Approximating CSP
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• Approximation  Distinguishing instances with different values. 

 

 

 

•  : the exact version; : fully approximation.


• Algorithmic side: Random sampling, SDP-based algorithms.


• Hardness side: NP-hardness or UG-hardness (through PCP theorem).


• Many fascinating results and open problems!

⇔

α = 1 α = 1 − ϵ, ∀ϵ > 0

-approximation: Let . For any , can distinguish the 

following. 

α α ∈ (0,1] v ∈ [0,m]

Yes: valΨ ≥ v No: valΨ < α ⋅ v
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• Approximation  Distinguishing instances with different values. 

 

 

 

•  : the exact version; : fully approximation.


• Algorithmic side: Random sampling, SDP-based algorithms.


• Hardness side: NP-hardness or UG-hardness (through PCP theorem).


• Many fascinating results and open problems!

⇔

α = 1 α = 1 − ϵ, ∀ϵ > 0

-approximation: Let . For any , can distinguish the 

following. 

α α ∈ (0,1] v ∈ [0,m]

Yes: valΨ ≥ v No: valΨ < α ⋅ v

Max-CUT:
0 10.9411/2 0.878



Unconditional Hardness
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Through the Lens of Streaming Model



CSP in the Streaming Model
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• Bounded space machine, i.e., only having  or even  space.

• The input (each constraint) arrives in a stream, i.e., see the input only once.


• Observation: Cannot even store an assignment (which requires n bits)!


• -approximation: Output an integer  such that


- there exists an assignment satisfying  constraints and


- .

o(n) O(log n)

α v
v

v ≥ α ⋅ valΨ
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CSP in the Streaming Model
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• Bounded space machine, i.e., only having  or even  space.

• The input (each constraint) arrives in a stream, i.e., see the input only once.


• Observation: Cannot even store an assignment (which requires n bits)!


• -approximation: Output an integer  such that


- there exists an assignment satisfying  constraints and


- .

o(n) O(log n)

α v
v

v ≥ α ⋅ valΨ

v



Example: Max-CUT in the Streaming Model
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• Trivial random sampling gives 1/2-approximation in the streaming model! 
 

 

• Use  space to record # edges.


• Why this would work?

O(log n)
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Example: Max-CUT in the Streaming Model

9

• Trivial random sampling gives 1/2-approximation in the streaming model! 
 

 

• Use  space to record # edges.


• Why this would work?

O(log n)

Random cut has value Exist a cut having value



Trivial Random Sampling is Optimal for Max-CUT!
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• Trivial random sampling gives 1/2-approximation using  space. 
 
 

 

O(log n)

• , there’s no (1/2+ )-approximation streaming algorithm for Max-CUT!∀ϵ > 0 ϵ
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• Trivial random sampling gives 1/2-approximation using  space. 
 
 

 

O(log n)

• , there’s no (1/2+ )-approximation streaming algorithm for Max-CUT!∀ϵ > 0 ϵ
✦ [Kapralov-Khanna-Sudan 15]:  space.Ω( n)
✦ [Kapralov-Khanna-Sudan-Velingker 17]: 0.99-approx. needs  space.Ω(n)
✦ [Kapralov-Krachun 19]:  space.Ω(n) There’s a SDP-based algorithm 

which gives 0.878-approx.



More Recent Developments on the Streaming Complexity of CSPs
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There are also lots of exciting recent works on graph problem and learning!

Paper CSPs Space Complexity Type of Results
[KKS15] Max-CUT 0.5-approx. hardness

[KKSV17] Max-CUT   0.99-approx. hardness
[GVV17] Max-DICUT 0.4-approx. algorithm
[GT19] Max-UG Approx. resistance
[KK19] Max-CUT 0.5-approx. hardness

[CGV20] All Boolean 2-CSP Full classification
[CGSV21a] All Boolean finite CSPs Full classification
[CGSV21b] All finite CSPs Full classification

[SSV21] All ordering CSPs Approx. resistance
[CGSVV21] All finite CSPs Partial hardness

Ω( n)

Ω( n)

O(log n) v.s. Ω( n)

Ω(n)

O(log n)

Ω(n)

Ω(n)

O(log3 n) v.s. Ω( n)

O(log3 n) v.s. Ω( n)

O(log3 n) v.s. Ω( n)



Our Results
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• We characterize the approximation ratio for every finite CSPs!


• In a slightly weaker setting of “sketching algorithms”. 

 

 

 

 

 

• More details stated in later slides.

Classification Theorem (Informal)* 

For every finite CSP, there exist  such that for every ,

(i) there’s an ( )-approx. by linear sketches that uses  

space and

(ii) ( ) -approx. using sketching algorithms requires  space.

α ϵ > 0
α − ϵ O(log3 n)

α + ϵ Ω( n)

Streaming algorithms with a 
certain “composable property”, 

ask me offline for definition!



Roadmap for Rest of the Talk
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Our Classification 
Theorem

Hardness

Algorithm

Conclusion & 
Future Directions



Our Classification Theorem
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And a Glimpse into the Proof



Our Classification Theorem for Approximating Finite CSP
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For every finite , every , and every 
, we define two sets ,  over  and show that 

they are computable in PSPACE.

q, k ∈ ℕ ℱ ⊂ {f : [q]k → {0,1}}
0 ≤ β < γ ≤ 1 KY

γ (ℱ) KN
β (ℱ) ℝ|ℱ|kq

Will elaborate in next few slides!



Our Classification Theorem for Approximating Finite CSP

15

Classification Theorem

(i) If , then -Max-CSP( ) can be solved by linear 
sketches in the dynamic setting using  space;

KY
γ (ℱ) ∩ KN

β (ℱ) = ∅ (γ, β) ℱ
O(log3 n)

(ii) If , then -Max-CSP( ) by sketching 
algorithms in the insertion-only setting requires  space .

KY
γ (ℱ) ∩ KN

β (ℱ) ≠ ∅ (γ − ϵ, β + ϵ) ℱ
Ω( n) ∀ϵ > 0

For every finite , every , and every 
, we define two sets ,  over  and show that 

they are computable in PSPACE.

q, k ∈ ℕ ℱ ⊂ {f : [q]k → {0,1}}
0 ≤ β < γ ≤ 1 KY

γ (ℱ) KN
β (ℱ) ℝ|ℱ|kq

Will elaborate in next few slides!

See our paper for more corollaries in some special settings!



Example: Max-DICUT [GVV17, CGV20]
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Definition (bias and total bias):
and

Cannot happen!

Cannot happen!

• Blue line: cut value upper bound.

• Red line: The cut value of greedy cut.

• Green line: Cut value achieved by 

random sampling with bias.

• Streaming algorithm: Estimate B and 

output max {green line, red line}.

• Ratio: When B = 2/5, the ratio is 4/9.

Ratio 
= 4/9

 norm of the bias vector!

Can be estimated using 
standard steaming tools.

ℓ1



Standard Ideas in Proving Streaming Lower bound
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Standard Ideas in Proving Streaming Lower bound

17

• Distinguishing statistics: , e.g., total bias of      [GVV17]. Q : Iℱ → ℝ Q( ) =

• Algorithmic side: Statistics  s.t. Q
(i)  can be estimated in small space;Q(Ψ)

(ii) For every , .q min
Q(Ψ)=q

valΨ > α ⋅ max
Q(Ψ)=q

valΨ

• Hardness side:  

 over  and  over   

s.t. no streaming algorithm with  space can distinguish them.

𝒟Y argmax
Q(Ψ)=q

valΨ 𝒟N argmin
Q(Ψ)=q

valΨ

o( n)

Technical challenges: Understand the extreme instances of the statistics.

Cannot happen!

Cannot happen!

Ratio 
= 4/9

The space of Max-CSP( ) instancesℱ
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ℓ1
O(log n)
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Key idea 2: Use the “geometry of ” to generate tight instances.ℱ
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Key idea 1: Generalizing bias to the  norm of a  bias matrix. 

 
 
 
Key idea 2: The “geometry” of  in .

ℓp,q

ℱ ℱ × [q]k

Here Come the Convex Sets!

-2 ? ?
-1 ? ?
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1 ? ?
0 ? ?

1 ? ?
-1 ?	 ?= ∑
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1

1 ×Bias matrix 1 ? ?
-1 ?	 ?
1 ? ?
-1 ?	 ?
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-1 ?	 ?
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•          marginals of distributions with value at most .

:=
γ

:= β

Pick the“weight matrices” to be 
the “marginal” of a distribution!

Distribution over ℱ × [q]k CSP instancesgenerates

Classification Theorem 

(i) If , then -Max-CSP( ) can be solved by linear 
sketches in the dynamic setting using  space;


(ii) If , then -Max-CSP( ) by sketching 
algorithms in the insertion-only setting requires  space .

KY
γ (ℱ) ∩ KN

β (ℱ) = ∅ (γ, β) ℱ
O(log3 n)

KY
γ (ℱ) ∩ KN

β (ℱ) ≠ ∅ (γ − ϵ, β + ϵ) ℱ
Ω( n) ∀ϵ > 0

KY
γ

KN
β



Hardness
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Hard!KY
γ (ℱ) ∩ KN

β (ℱ) ≠ ∅ ⇒

KY
γ KN

β



Streaming Lower Bounds via Communication Complexity
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• Unconditional lower bounds from communication games.


• High-level idea: 

 

 

 

• Usage: Alice and Bob insert some inputs to the streaming algorithm and 

send the “configuration” as the message.


• Space complexity of streaming algorithm  communication complexity.≥

Streaming Algorithm
Communication 

Protocol



A Bird-Eye View of Our Lower Bound Proof

A sequence of reductions from communication games to streaming problems!

22

Streaming CSPsCommunication Games

Ψ = {( fi, Si)}i∈[m]

Yes Distribution

Random bipartite graph

No Distribution

Random graphs

Boolean Hidden Matching problem

[GKK+09]

Randomized Mask Detection problem
Generalize to k > 2

Signal Detection problem

Generalize to  & matching marginals q > 2

Simultaneous Signal Detection problem

Increase the # of (hyper)edges

Produce CSP constraints
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Streaming CSPsCommunication Games

Ψ = {( fi, Si)}i∈[m]

Yes Distribution

Random bipartite graph

No Distribution

Random graphs

Boolean Hidden Matching problem

[GKK+09]

Randomized Mask Detection problem
Generalize to k > 2

Signal Detection problem

Generalize to  & matching marginals q > 2

Simultaneous Signal Detection problem

Increase the # of (hyper)edges

Produce CSP constraints𝒟Y 𝒟N

Same marginal

KY
γ KN

β

valΨ ≥ γ valΨ ≤ β



Algorithm
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 Algorithm!KY
γ (ℱ) ∩ KN

β (ℱ) = ∅ ⇒ ∃
KY

γ KN
β



Key Ideas and a Sketch of the Analysis for our Algorithm
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• Recall: We generalize the bias vector of Max-DICUT to bias matrix.

KY
γ

KN
β
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• Recall: We generalize the bias vector of Max-DICUT to bias matrix.
• Observation:  and  are convex  separating vector .KY

γ KN
β ⇒ ∃ λ ∈ ℝ|ℱ|kq

KY
γ

KN
β

λ
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• Recall: We generalize the bias vector of Max-DICUT to bias matrix.
• Observation:  and  are convex  separating vector .KY

γ KN
β ⇒ ∃ λ ∈ ℝ|ℱ|kq

• The  norm of the bias matrix using  is a good distinguishing statistics! ℓ1,∞ λ

     Q(Ψ) =
1
m

This might look like coming out of nowhere… 

but it’s actually a very natural choice if knowing the previous analysis!

∑
i∈[m]

1

1
× λ

(1) Take the max

(2) Take the  normℓ1

Desired properties of :Q(Ψ)

(i)   can be estimated in  space;Q(Ψ) O(log3 n)
- Tool from the streaming literature [AKO11].

(ii) For every , .q min
Q(Ψ)=q

valΨ > α ⋅ max
Q(Ψ)=q

valΨ

- A direct probability analysis utilizing the 
structure of .SY

γ , SN
β

KY
γ

KN
β

λ



Conclusion & Future Directions
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Conclusion
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Classification Theorem 

For every finite , every , and every 
, the following hold.


(i) If , then -Max-CSP( ) can be solved by linear 
sketches in the dynamic setting using  space;


(ii) If , then -Max-CSP( ) by sketching 

algorithms in the insertion-only setting requires  space .

q, k ∈ ℕ ℱ ⊂ {f : [q]k → {0,1}}
0 ≤ β < γ ≤ 1

KY
γ (ℱ) ∩ KN

β (ℱ) = ∅ (γ, β) ℱ
O(log3 n)

KY
γ (ℱ) ∩ KN

β (ℱ) ≠ ∅ (γ − ϵ, β + ϵ) ℱ

Ω( n) ∀ϵ > 0

Main technical contributions: (i) Identifying the right convex sets and the 
communication games, (ii) design a sequence of cool reductions.



What I Skipped
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• How to establish the lower bound for uniform marginal case?

- The standard Fourier analysis boils down to a combinatorial counting problem.


• How does the polarization technique work?

- For each marginal , there’s a polarized distribution  s.t. for every  with , there’s a finite path a 

indistinguishable distributions connecting  and .


• How to increase the # of (hyper)edges?

- We only know how to do this via data processing inequality or through simultaneous communication model where the 

former can only handle uniform marginal and the latter only gives lower bound against sketching algorithms.


• Why the lower bounds only hold for sketching algorithms?

- In fact, the CSP distributions generated by SD problem is distinguishable by a streaming algorithm with logarithmic space 

when the marginal is not uniform! New communication game and idea are needed.


• The analysis of our linear sketches?

- It’s mainly standard probabilistic analysis and heavily relying on our good choices of the convex sets.


• Examples of the instantiation of our classification theorem?

- See our paper for examples on Max-DICUT, Max-UG, and Max-Coloring!

μ 𝒟μ 𝒟 μ(𝒟) = μ
𝒟 𝒟μ



Future Directions
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Multi-pass lower bound
• Closer to bounded space model

• Technically challenging

Insertion-only + general 
streaming lower bound
• New communication game is needed!

• Any possible separation!?

Linear space lower bound
• Full classification in linear space?

• Separation from  space?n

Applications & Instantiations 
of our classification theorem
• Simplify our characterization in 

interesting cases?

• The communication games could 

be of interest in other area?



Appendix
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Different streaming 
models

More on the 
convex sets

More on the 
hardness side



Different Streaming Models
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Various Streaming Settings

Input Models Streaming Models

Insertion-only +,+,+,+,+,…

Strict turnstile

(a.k.a. Dynamic) +,+,-,+,-,…

Turnstile -,-,+,-,+,…

Linear sketches

Sketches

Streaming 
algorithm Anything!

C(x)
(with C(x ∘ y) = f(C(x), C(y))

M(x)
(with M(x ∘ y) = M(x) + M(y)

Algorithm

Hardness

Easier

Harder

Harder

Easier



More on the Convex Sets
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Hardness Side: Connecting Bias Matrix to Constraint Space

The intuition of using constraint space came from the hardness proof which will be explained later…
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• Constraint space:  containing tuples of the form . 

 

 

 

• An assignment  has value .

- (Planted assignment) Let  with .

- (Random assignment) Sample  with  for every  over .


• Yes/No distributions over the constraint space:

- .


- .

ℱ × [q]k ( f, a)

b ∈ [q]kq val( f, a)(b) = f(b1,a1
, b2,a2

, …, bk,ak
)

𝕀 ∈ [q]kq 𝕀i,σ = σ
b bi,σ ∼ 𝒫σ 𝒫σ [q]

SY
γ (ℱ) := {𝒟 | 𝔼( f,a∼𝒟)[val( f, a)(𝕀)] ≥ γ}

SN
β (ℱ) := {𝒟 | 𝔼( f,a)∼𝒟[𝔼b,bi,σ∼𝒫σ

[val( f, a)(b)]] ≤ β, ∀𝒫σ}

-2 ? ?

-1 ? ?

2 ? ?

1 ? ?

0 ? ?

1 ? ?
-1 ?	 ?

= ∑
constraints

1

1
×Bias matrix 1 ? ?

-1 ?	 ?
1 ? ?
-1 ?	 ?

1 ? ?

-1 ?	 ?
Pick the dimension of these 

“weight matrices” to be k × q
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• Use the Yes/No distributions  &  to generate boundary instances.

• Key hardness idea: 

 

• For a distribution over , define marginal  by


.


- .


- .

𝒟Y 𝒟N

ℱ × [q]k μ(𝒟) = (μf,i,σ) ∈ ℝ|ℱ|kq

μf,i,σ = Pr
(g,a)∼𝒟

[g = f and ai = σ]

KY
γ (ℱ) := {μ(𝒟) | 𝒟 ∈ SY

γ (ℱ)}
KN

β (ℱ) := {μ(𝒟) | 𝒟 ∈ SN
β (ℱ)}

Here Come the Convex Sets!

Classification Theorem 

(i) If , then -Max-CSP( ) can be solved by linear 
sketches in the dynamic setting using  space;


(ii) If , then -Max-CSP( ) by sketching 
algorithms in the insertion-only setting requires  space .

KY
γ (ℱ) ∩ KN

β (ℱ) = ∅ (γ, β) ℱ
O(log3 n)

KY
γ (ℱ) ∩ KN

β (ℱ) ≠ ∅ (γ − ϵ, β + ϵ) ℱ
Ω( n) ∀ϵ > 0

“Marginals” of  and  match  Can’t distinguish in  space.𝒟Y 𝒟N ⇒ o( n)
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Structure of the Our Lower Bound Proof

A sequence of reductions from communication games to streaming problems!

36 * To make the reductions work, we work on the “advice” version of the games.



( )-Signal Detection (SD) Problem

How communication games relate to streaming CSPs!
𝒟Y, 𝒟N
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Let ,  small enough,  distributions over .n, k, q ∈ ℕ α ∈ (0,1) 𝒟Y, 𝒟N [q]k

Generator 
1. Sample .

2. Sample a partial permutation matrix .

3. Sample  from one of the following:

• (Yes) each  is sampled from .

• (No) each  is sampled from .


4. Let  be given by  iff .

x* ∼ Unif([q]n)
M ∈ {0,1}kαn×n

b = (b(1), b(2), …, b(αn))
b(i) ∈ [q]k 𝒟Y

b(i) ∈ [q]k 𝒟N

z ∈ {0,1}αn zi = 1 Mix* = b(i)

Goal: Distinguish Yes & No! Alice

x*

Bob

M, z

1
1

1
1

1
1

1
1

1

M

=

M1

M2

M3

* To make the reductions work, we work on the “advice” version of the games.



Reduce SD to Streaming CSP
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Let ,  small enough,  a distribution over .n, k, q ∈ ℕ α ∈ (0,1) 𝒟 [q]k

1. Sample .

2. Sample a partial permutation matrix .

3. Sample  s.t. each .

4. Let  be given by  iff .

x* ∼ Unif([q]n)
M ∈ {0,1}kαn×n

b = (b(1), b(2), …, b(αn)) b(i) ∼ 𝒟
z ∈ {0,1}αn zi = 1 Mix* = b(i)

1
1

1
1

1
1

1
1

1

M =

Alice Bob

x* M, z

M1

M2

M3

For each  s.t. , insert a 
constraint  to the streaming algorithm!

i ∈ [αn] zi = 1
( f, Mi)

Observe that when setting the assignment to 
, the distribution outputted by Bob follows 

 where .
x*
( f, Mx*) ∼ ( f, b) b ∼ 𝒟

Reject sampling!



When Are the Communication Games Hard?
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The game is hard when both 
distributions have uniform marginal.


(Analyzing the total variation distance 
via Fourier analysis.)

Boolean Hidden Matching problem

[GKK+09]

Yes Distribution

Random bipartite graph

No Distribution

Random graphs

We develop a polarization technique for 
reduction between communication 

games while keeping the marginals of 
the two distributions the same

( )-SD

with 

𝒟Y, 𝒟N

μ(𝒟Y) = μ(𝒟N)

Generator

Alice

x* M, z

Bob

Corresponds to !KY
γ ∩ KN

β ≠ ∅


