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What is Spiking Neural Networks (SNNs)?

* Mathematical models for “biological neural networks”.

Neurons: Nerve cells

Synapses: Connections between neurons

* By Pennstatenews https://www.flickr.com/photos/pennstatelive/37247502805
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What is Spiking Neural Networks (SNNs)?

* Mathematical models for “biological neural networks”.

Neurons: Nerve cells
Synapses: Connections between neurons

Spikes: Instantaneous signals

* By Pennstatenews https://www.flickr.com/photos/pennstatelive/37247502805
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What is Spiking Neural Networks (SNNs)?

* Mathematical models for “biological neural networks”.

Neurons
Synapses
Spikes
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What is Spiking Neural Networks (SNNs)?

* Mathematical models for “biological neural networks”.

e Various models since the 1900s.

* |Integrate-and-fire [Lap07], Hodgkin-Huxley [HH52],

\_

Neurons
Synapses
Spikes

their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BLO3, FTHVVBO03, 1+03, TMS14].
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Synapses
Spikes

their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BLO3, FTHVVBO03, 1+03, TMS14].

» Study the behaviors/statistics of SNNs, e.g., firing rate.
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What is Spiking Neural Networks (SNNs)?

* Mathematical models for “biological neural networks”.

Neurons
e Various models since the 1900s. Synapses
Spikes
* Integrate-and-fire [Lap07], Hodgkin-Huxley [HH52], - /

their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BLO3, FTHVVBO3, 1+03, TMS14].
» Study the behaviors/statistics of SNNs, e.g., firing rate.

« [Barret-Denéve-Machens 2013] empirically showed a connection between
the firing rate of integrate-and-fire SNNs and an optimization problem.

SNNs seem to have non-trivial computational power. Can we
understand them better through the lens of algorithms?
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Integrate-and-Fire (IAF) Model [Lapicque 1907]
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

* Potential: u(t) € R
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

* Potential: u(t) € R

--------------- " * Dynamics:u(t+1) =u(t) —Cs(t) +1
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

* Potential: u(t) € R

--------------- " * Dynamics:u(t+1) =u(t) —Cs(t) + 1
.

n 6 External charging
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

* Potential: u(t) € R

--------------- " * Dynamics:u(t+1) =u(t) —Cs(t) +1

n 6 Spiking effects
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Integrate-and-Fire (IAF) Model [Lapicque 1907]
I,

* Neurons: [n] ={1,2,...,n}

* Potential: u(t) € R

 Dynamics:u(t+ 1) =u(t) —Cs(t) +1

* External charging: I € R"
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

............... ) el . Potential: u(t) € R”
0 © R )  Dynamics:u(t+1) =u(t) —Cs(t) +1
" 6/ * External charging: I € R"
o <§% 0 * Spikes: s(t) € {0,1}" { Firing Rule J
? o L i sit) =1ou(t) =1
5
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

Potential: u(t) € R"

Dynamics: u(t + 1) = u(t) — Cs(t) + 1

External charging: I € R"

Connectivity: C € R™" | 5i(t) =1 o u;(t) =1

Chi-Ning Chou (Harvard University) On the Algorithmic Power of Spiking Neural Networks 3/10



Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}
* Potential: u(t) € R
 Dynamics:u(t+ 1) =u(t) —Cs(t) +1

* External charging: I € R"

e Connectivity: C € R™" | 5i(t) =1 o u(t) =7
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}

* Potential: u(t) € R

[  Dynamics:u(t+ 1) =u(t) —Cs(t) +1 ]

* External charging: I € R"

e Connectivity: C € R™" | 5i(t) =1 o u(t) =7
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Integrate-and-Fire (IAF) Model [Lapicque 1907]

* Neurons: [n] ={1,2,...,n}
* Potential: u(t) € R
 Dynamics:u(t+ 1) =u(t) —Cs(t) +1

* External charging: I € R"

e Connectivity: C € R™" | 5i(t) =1 o u(t) =7

* Firing rate: x(t) = (#spikes before time t)/t
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& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

1 0 0.2 0 « Connectivity: C € R™*"
e Setup: C = , I = , u(0) = ,n = 1.
P (_0-5 1) ( 0 ) (O) 7 * Firing rate: x(t)
e u(t+1)=u(t)—-Cs(t) + I/




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

seumc=(y 9. 1=[F) wo= Qe creameen

e u(t+1) =u(t) —Cs(t) +I/

0.2 -
N 0
(1) #spikes = 0; x1(t) = 0;u(t) =0
I
0

J\ ................ n #Splkes _ O; xz (t) — O; uz (t) —_ O




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

* Setup: =( 1 O)' I'= (O'Z)' u(0) = (8)"7 - b E:innngercatti:i:t:(f)e

Rnxn

e u(t+1) =u(t) —Cs(t) +I/

0.2 -
N 0
(1) #spikes = 0; x,(t) = 0; u(t) = 0.2

N H 0 #Spikes _ O; X, (t) _ O; u, (t) — 0




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

* Setup: =( 1 O)' I'= (O'Z)' u(0) = (8)"7 - b E:innngercatti:i:t:(f)e

Rnxn

e u(t+1) =u(t) —Cs(t) +I/

0.2 -
N 0
(1) #spikes = 0; x,(t) = 0; u,(t) = 0.4

N H 0 #Spikes _ O; X, (t) _ O; u, (t) — 0




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

* Setup: =( 1 O)' I'= (O'Z)' u(0) = (8)"7 - b E:innngercatti:i:t:(f)e

Rnxn

e u(t+1) =u(t) —Cs(t) +I/

0.2 -
N .
(1) #spikes = 0; x1(t) = 0; u(t) = 0.6

N H 0 #Spikes _ O; X, (t) _ O; u, (t) — 0




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

* Setup: =( 1 O)' I'= (O'Z)' u(0) = (8)"7 - b E:innngercatti:i:t:(f)e

Rnxn

e u(t+1) =u(t) —Cs(t) +I/

0.2 -
N .
(1) #spikes = 0; x,(t) = 0; u(t) = 0.8

N H 0 #Spikes _ O; X, (t) _ O; u, (t) — 0




Example

* Setup: C = (

1 0
—-05 1

)’ I'= (0.2); u(O) = (8),77 —1. « Connectivity: C € R™"

(c Potential: u(t) € R" A

* External charging: I € R"
* Spikes: s(t) € {0,1}"

0 * Firing rate: x(t)

e u(t+1)=u(t)—-Cs(t)+1

- /

#spikes = 0; x,(t) = 0;u () =1

#spikes = 0; x,(t) = 0;u,(t) =0



Example

* Setup: C = (

1 0
—-05 1

)’ I'= (0.2); u(O) = (8),77 —1. « Connectivity: C € R™"

(c Potential: u(t) € R" A

* External charging: I € R"
* Spikes: s(t) € {0,1}"

0 * Firing rate: x(t)

e u(t+1)=u(t)—-Cs(t)+1

- /

#spikes = 1; x,(t) = 0.2;u,(t) =1

#spikes = 0; x,(t) = 0;u,(t) =0



(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

e Setup:C = ‘ (1))’ | = (O(-)Z), u(0) = (8),77 1 : Connectivity: C € R™*"

Firing rate: x(t)

e u(t+1)=u(t)—-Cs(t)+1

0.2 N /
-1 N\ n
Q@ #spikes = 1; x,(t) = 0.2;u,(t) =1
{ t=>5 ] 0.5 0
‘V'O ................
g\ #spikes = 0; x,(t) = 0;u,(t) =0
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& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—05 1 0 * Firing rate: x(t)
0.2 - u(t+1) =u(t) — Cs(t) + I
N 0

(1) #spikes = 1; x,(t) = 0.167; u,(t) = 0.2

#spikes = 0; x,(t) = 0; u,(t) = 0.5




& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—05 1 0 * Firing rate: x(t)
0.2 - u(t+1) =u(t) — Cs(t) + I
N 0

o #spikes = 1; x,(t) = 0.143;u,(t) = 0.4

#spikes = 0; x,(t) = 0; u,(t) = 0.5




& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—0.5 1 0 * Firing rate: x(t)
0.2 _° u(t+1)=u(t)—Cs(t)+I/
N .
(1) #spikes = 1; x,(t) = 0.125; u,(t) = 0.6
= |
0
n .

#spikes = 0; x,(t) = 0; u,(t) = 0.5




& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—0.5 1 0 * Firing rate: x(t)
0.2 _° u(t+1)=u(t)—Cs(t)+I/
N .
(1) #spikes = 1; x,(t) = 0.111; u,(t) = 0.8
= |
0
n .

#spikes = 0; x,(t) = 0; u,(t) = 0.5




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

seumc=(y 91232 w0 Qe retmeen

e u(t+1)=u(t)—-Cs(t)+1

0.2 N /
N n
(1) #spikes = 1; x,(t) = 0.1;u,(t) = 1

j\ ............... n #Spikes _ O, xz (t) — O, uZ (t) — 05




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

seumc=(y 91232 w0 Qe retmeen

e u(t+1)=u(t)—-Cs(t)+1

0.2 N /
N n
(1) #spikes = 2; x,(t) = 0.2; u,(t) =1

j\ ............... n #Spikes _ O, xz (t) — O, uZ (t) — 05




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

* Setup:C = ‘ (1))’ | = (O(-)Z), u(0) = (8),77 1 : Connectivity: C € R™*"

Firing rate: x(t)

e u(t+1)=u(t)—-Cs(t)+1

0.2 N /
-1 N\ n
Q@ #spikes = 2; x,(t) = 0.2; u,(t) =1

J\ ............... n #Spikes _ O, xz (t) — O, uZ (t) — 05




(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

1 0 0.2 0 * Connectivity: C € R™"
* Setup: C = , I = , u(0) = ,n = 1.
( ) ( ) (0) * Firing rate: x(t)
e u(t+1)=u(t)—-Cs(t)+1

0.2 N /
N 0
(1) #spikes = 2; x,(t) = 0.182; u,(t) = 0.2

o #spikes = 0; x,(t) = 0; u,(t) =1




& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—05 1 0 * Firing rate: x(t)
0.2 - u(t+1) =u(t) — Cs(t) + I
N 0

(1) #spikes = 2; x,(t) = 0.182; u,(t) = 0.2

o #spikes = 1; x,(t) = 0.09; u,(t) =1




& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—05 |1 0 * Firing rate: x(t)
0.2 - u(t+1) =u(t) — Cs(t) + I
N 0

(1) #spikes = 2; x,(t) = 0.182; u,(t) = 0.2

g‘e #spikes = 1; x,(t) = 0.09; u,(t) =1




Example

° Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

(c Potential: u(t) € R" A

* External charging: I € R"
* Spikes: s(t) € {0,1}"

* Firing rate: x(t)

e u(t+1)=u(t)—-Cs(t)+1

- /

#spikes = 2; x4(t) = 0.167;u,(t) = 0.4



(c Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

1 0 0.2 0 « Connectivity: C € R™*"
e Setup: C = , I = , u(0) = ,n = 1.
P (_0-5 1) ( 0 ) (O) 7 * Firing rate: x(t)
e u(t+1)=u(t)—-Cs(t)+1

0.2 \_ )
j\ n
(1) #spikes = 200; x,(t) = 0.200; u,(t) =1
{t = 1000} I
0
n i

#spikes = 99; x,(t) = 0.099; u,(t) = 0.5




& Potential: u(t) € R" A

Example e External charging: I € R"
* Spikes: s(t) € {0,1}"

o Setup: C = ( 1 0)’ ] = (0.2), u(O) _ (8),77 1 * Connectivity: C € R™"

—05 1 0 * Firing rate: x(t)
0.2 _* u+ 1) =ul)-Cs() +1
N n
o #spikes = 200;(x; () = 0.200] uy (¢) = 1
{t = 1000} "
0
g\ n #spikes = 99;[x2 (t) = 0_099] u,(t) = 0.5
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The Algorithmic Power of Integrate-and-fire SNN?

[Barrett-Deneve-Machens, NIPS 2013]
Using an “optimization problem” to analyze the firing rate of an integrate-and-fire SNN.
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The Algorithmic Power of Integrate-and-fire SNN?

[Barrett-Deneve-Machens, NIPS 2013]
Using an “optimization problem” to analyze the firing rate of an integrate-and-fire SNN.

1 - = ok e y
\ ) A \ i
! \ PC (X
L4 X \ > A
, VoK

AN
)

firing rate
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The Algorithmic Power of Integrate-and-fire SNN?

[Barrett-Deneve-Machens, NIPS 2013]
Using an “optimization problem” to analyze the firing rate of an integrate-and-fire SNN.

4 Non-negative N\

Least Squares

min ||Cx — I||3
xeRnll |5

S.t. Xi = O,Vi (S [Tl]

solution

2

firing rate
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The Algorithmic Power of Integrate-and-fire SNN?

[Barrett-Deneve-Machens, NIPS 2013]

Using an “optimization problem” to analyze the firing rate of an integrate-and-fire SNN.

TN o \(
| \ S . X
£ £ . \ S i ~
\—7 Do,

firing rate

Chi-Ning Chou (Harvard University)

4 Non-negative N\

Least Squares

min ||Cx — I||3
xeRnll |5

S.t. Xi = O,Vi (S [Tl]

~y
~y

solution
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solution
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Using
solution to
estimate
firing rate
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The Algorithmic Power of Integrate-and-fire SNN?

[Barrett-Deneve-Machens, NIPS 2013]
Using an “optimization problem” to analyze the firing rate of an integrate-and-fire SNN.

cn

. Using
. lution
Non-negative N 5 '
solution to
Least Squares - estimate

min ||Cx — I|5 firing rate
xERM

s.t.x; = 0,Vi € [n]
(G, 1)

Using firing rate g |

firing rate - X

to estimate
solution

firing rate ~ solution
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The Algorithmic Power of Integrate-and-fire SNN?

[Barrett-Deneve-Machens, NIPS 2013]
Using an “optimization problem” to analyze the firing rate of an integrate-and-fire SNN.

cn

. Using
. lution
Non-negative N 5 '
solution to
Least Squares - estimate

min ||Cx — I|5 firing rate
x€ERM

Using firing rate §§ 3 |
< s.t.x; = 0,Vi € [n]

firing rate -

to estimate
solution

(C,I)

firing rate

solution

2

{ No provable analysis! }
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Our Contributions
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Our Contributions

o

The first proof for the firing rate of integrate-and-fire SNNs efficiently
solving the non-negative least squares problem.

e Confirm the empirical discovery of [Barret-Denéve-Machens 2013].

/

C
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Our Contributions

The first proof for the firing rate of integrate-and-fire SNNs efficiently
solving the non-negative least squares problem.

e Confirm the empirical discovery of [Barret-Denéve-Machens 2013].

\_ )

/

What if there are infinitely many solutions?

- /
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Our Contributions

The first proof for the firing rate of integrate-and-fire SNNs efficiently
solving the non-negative least squares problem.

e Confirm the empirical discovery of [Barret-Denéve-Machens 2013].

\_ )
~

What if there are infinitely many solutions?

* Further show that the firing rate of integrate-and-fire SNN efficiently finds the
sparse solution (in the €1 sense)

- /
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Our Contributions

o

The first proof for the firing rate of integrate-and-fire SNNs efficiently
solving the non-negative least squares problem.

e Confirm the empirical discovery of [Barret-Denéve-Machens 2013].

/

~

What if there are infinitely many solutions?

* Further show that the firing rate of integrate-and-fire SNN efficiently finds the
sparse solution (in the €4 sense), by implementing a primal-dual + projected
gradient descent algorithm.

- /

C
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Theorem (€1 minimization problem)



Theorem (€1 minimization problem)

Given 4 € R™"™ b € R™, and € > 0. Suppose A satisfies some regular

and properly set the
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Theorem (€1 minimization problem)

Given 4 € R™"™ b € R™, and € > 0. Suppose A satisfies some regular

conditionsSet C and properly set the

integrate-and-fire SNN Let x™ be the optlmal solution to the ¥4
minimization problem.

min X
min  lxll,

s.t. Ax = Db

Chi-Ning Chou (Harvard University) On the Algorithmic Power of Spiking Neural Networks 7/10



Theorem (€1 minimization problem)

Given 4 € R™"™ b € R™, and € > 0. Suppose A satisfies some regular

conditionsSet C and properly set the

integrate-and-fire SNN Let x™ be the optlmal solution to the ¥4
minimization problem.

min X
min  lxll,
s.t. Ax =Db

When t > Q( ) we have (i) ||b — Ax(t)]|, < € - ||b]|, and
(i) [lx(l — 2™l < € - |[x™|l5.
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Primal SNN Dual SNN

Dynamics u(t+1) = u() - (4 }4 2 _fr;A) s) +(* ;Tbb)

Optimization
problem

Chi-Ning Chou (Harvard University) On the Algorithmic Power of Spiking Neural Networks 8/10



Key Techniqgue — A Dual View of SNN

Primal SNN Dual SNN

Dynamics u(t+1) = u() - (4 F 2 _Ifr;A) s) +(* ;Tbb)

Optimization min ||x]l; e
P o x€R™ (£1 minimization)
probiem st. Ax=Db

Chi-Ning Chou (Harvard University) On the Algorithmic Power of Spiking Neural Networks 8/10



Key Techniqgue — A Dual View of SNN

Primal SNN Dual SNN
Dynamics u(t+1) =u(t) - (—A,FA _A“.lr;A) s(t) + (_A;Tbb) vt+1D)=vt)— (A4 —-A)s(t)+b
Optimizati min ||x||
P |m|;|za on x€R . (£; minimization)
probiem st. Ax=0b

Chi-Ning Chou (Harvard University) On the Algorithmic Power of Spiking Neural Networks 8/10



Key Techniqgue — A Dual View of SNN

Primal SNN

Dual SNN

Dynamics

ut+ D =u@® - (A4 AN s+ (AL

—ATA ATA —A"h

)

vt+1D)=vt)— (A4 —-A)s(t)+b

Optimization
problem

min ||x]l; L
x€ER (1 minimization)
st. Ax=">b

Chi-Ning Chou (Harvard University)

-
5161]1%;% b'v (The dual of

st. ||ATv||l, <1 ¢4 minimization)

On the Algorithmic Power of Spiking Neural Networks 8/10



Key Techniqgue — A Dual View of SNN

Primal SNN

Dual SNN

Dynamics

ut+ D =u@® - (A4 AN s+ (AL

—ATA ATA —A"h

)

vt+1D)=vt)— (A4 —-A)s(t)+b

Optimization
problem

min ||x]l; L
x€ER (1 minimization)
st. Ax=">b

Chi-Ning Chou (Harvard University)

-
5161]%)% b'v (The dual of

st. ||ATv||l, <1 ¢4 minimization)

v(t) is a projected gradient descent
algorithm for dual program with
non-standard projection.

On the Algorithmic Power of Spiking Neural Networks 8/10




Key Techniqgue — A Dual View of SNN -
-

Primal SNN

\
External charging

~y

Gradient

Dual SNN

Dynamics

T AT T
ue+D=u@- (428 Lo+ (47

)

vt+1)=v(t)— (4 —A)s(t

Optimization
problem

Chi-Ning Chou (Harvard University)

min ||x]l; L
x€ER (1 minimization)
st. Ax=">b

-
(The dual of

st. ||ATv||l, <1 ¢4 minimization)

\_

-

v(t) is a projected gradient descent
algorithm for dual program with
non-standard projection.

On the Algorithmic Power of Spiking Neural Networks 8/10




Key Techniqgue — A Dual View of SNN N
-

Spiking effect

Projection
Primal SNN Dual SNN
Dynamics u(t+1) =u(t) - (_‘ng _A“.lr;A) s(t) + (_A;Tbb) vt+1D)=v(itl-(A -A)st)Hb
Optimization min x4 mdx b'v (The dual of
" X€ER (£, minimization) = V&R e duatc
problem st Ax =b st. |[|ATv||, < 1| €1 minimization)

Chi-Ning Chou (Harvard University)

v(t) is a projected gradient descent
algorithm for dual program with
non-standard projection.

On the Algorithmic Power of Spiking Neural Networks 8/10




Key Techniqgue — A Dual View of SNN

Primal SNN Dual SNN
Dynamics u(t+1) =u(t) - (_‘ng _A“.lr;A) s(t) + (_A;Tbb) vt+1D)=vt)— (A4 —-A)s(t)+b
: T
Optimization min ||x|[, max b’ v
P x€R™ (£1 minimization) = VER™ (The.d‘fal ?f
problem st Ax=b st. [[ATv||, <1 €1 minimization)
4 I 4 , . .
Tihie (it v i ifins] S KKT conditions v(t) is a projected gradient descent
solves the primal program. < | algorithm for dual program with
9 ) Perturbation theory | non-standard projection. P
Chi-Ning Chou (Harvard University) On the Algorithmic Power of Spiking Neural Networks 8/10




/ N
Spikes are non-monotone
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Through the lens of natural algorithms, can we understand SNNs more via its
algorithmic power and even discover new algorithmic ideas?
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In this work, we show that integrate-and-fire SNN uses its firing rate to
efficiently solve some optimization problems in a primal-dual way!
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efficiently solving non-negative least squares problem and £; minimization problem.

e Related works.

* Universality and computational complexity.

* SNN is able to simulate Turing machines, random access machines (RAM), and threshold circuits etc. [Maa96, Maa97b,
Maa99, MBO1].

* Using SNNs to solve computational/optimization problems.
* Sparse coding [ZMD11, Tan16, TLD17], dictionary learning [LT18], pattern recognition [DC15, KGM16, BMF+17], and non-
negative least squares[BDM13].
* Implementing MCMC to solve traveling salesman problem (TSP) and constraint satisfaction problem (CSP) [BBNM11,
JHM14, Maal5, JHM16].
* Assemblies of neurons and random projection [ADMPSV18, LPVM18, PV19].
* The efficiency of SNNs in solving computational problems.
* Solving Winner-Take-All (WTA) problem, similarity testing, and neural coding [LMP17a, LMP17b, LMP17c, LM18].
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Thanks for
your attention!
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