On the Algorithmic Power of Spiking Neural Networks

Chi-Ning Chou Harvard University

Kai-Min Chung Academia Sinica Chi-Jen Lu Academia Sinica

ITCS 2019

• Mathematical models for "biological neural networks".

• Mathematical models for "biological neural networks".

* By Pennstatenews https://www.flickr.com/photos/pennstatelive/37247502805

• Mathematical models for "biological neural networks".

* By Pennstatenews https://www.flickr.com/photos/pennstatelive/37247502805

Neurons: Nerve cells

• Mathematical models for "biological neural networks".

* By Pennstatenews https://www.flickr.com/photos/pennstatelive/37247502805

Neurons: Nerve cells

Synapses: Connections between neurons

• Mathematical models for "biological neural networks".

* By Pennstatenews https://www.flickr.com/photos/pennstatelive/37247502805

Neurons: Nerve cells

Synapses: Connections between neurons

Spikes: Instantaneous signals

• Mathematical models for "biological neural networks".

Neurons Synapses Spikes

- Mathematical models for "biological neural networks".
- Various models since the 1900s.
 - Integrate-and-fire [Lap07], Hodgkin-Huxley [HH52], their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BL03, FTHVVB03, I+03, TMS14].

Neurons Synapses Spikes

- Mathematical models for "biological neural networks".
- Various models since the 1900s.
 - Integrate-and-fire [Lap07], Hodgkin-Huxley [HH52], their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BL03, FTHVVB03, I+03, TMS14].
- Study the behaviors/statistics of SNNs, e.g., firing rate.

- Mathematical models for "biological neural networks".
- Various models since the 1900s.
 - Integrate-and-fire [Lap07], Hodgkin-Huxley [HH52], their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BL03, FTHVVB03, I+03, TMS14].
- Study the behaviors/statistics of SNNs, e.g., firing rate.
- [Barret-Denève-Machens 2013] empirically showed a connection between the firing rate of integrate-and-fire SNNs and an optimization problem.

Neurons Synapses Spikes

- Mathematical models for "biological neural networks".
- Various models since the 1900s.
 - Integrate-and-fire [Lap07], Hodgkin-Huxley [HH52], their variants [Fit61, Ste65, ML81, HR84, Ger95, KGH97, BL03, FTHVVB03, I+03, TMS14].
- Study the behaviors/statistics of SNNs, e.g., firing rate.
- [Barret-Denève-Machens 2013] empirically showed a connection between the firing rate of integrate-and-fire SNNs and an optimization problem.

SNNs seem to have non-trivial computational power. Can we understand them better through the lens of algorithms?

Neurons Synapses Spikes

• Neurons: $[n] = \{1, 2, ..., n\}$

• Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t + 1) = u(t) Cs(t) + I

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$

• Dynamics:
$$u(t + 1) = u(t) - Cs(t) + I$$

External charging

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$

• Dynamics:
$$u(t + 1) = u(t) - Cs(t) + I$$

Spiking effects

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t+1) = u(t) Cs(t) + I
- External charging: $I \in \mathbb{R}^n$

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t+1) = u(t) Cs(t) + I
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$

Firing Rule $s_i(t) = 1 \Leftrightarrow u_i(t) \ge \eta$

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t+1) = u(t) Cs(t) + I
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$

Firing Rule
$$s_i(t) = 1 \Leftrightarrow u_i(t) \ge \eta$$

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t + 1) = u(t) Cs(t) + I
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$

Firing Rule
$$s_i(t) = 1 \Leftrightarrow u_i(t) \ge \eta$$

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t + 1) = u(t) Cs(t) + I
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$

Firing Rule
$$s_i(t) = 1 \Leftrightarrow u_i(t) \ge \eta$$

- Neurons: $[n] = \{1, 2, ..., n\}$
- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- Dynamics: u(t + 1) = u(t) Cs(t) + I
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$

• Connectivity: $C \in \mathbb{R}^{n \times n}$ **s**

$$s_i(t) = 1 \Leftrightarrow u_i(t) \ge \eta$$

• Firing rate: x(t) = (# spikes before time t)/t

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)
- $\boldsymbol{u}(t+1) = \boldsymbol{u}(t) C\boldsymbol{s}(t) + \boldsymbol{I}$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

0.2

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

т

0.2

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

0.2

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

1

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: $\mathbf{x}(t)$

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

$$u(t+1) = u(t)$$

$$u(t+1) = u(t)$$

$$u(t+1) = u(t)$$

$$u(t+1) = 0$$

$$u_{1}(t) = 1$$

$$u_{2}(t) = 0$$

$$u_{2}(t) = 0; u_{2}(t) = 0; u_{2}(t) = 0.5$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

t =

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

• Setup:
$$C = \begin{pmatrix} 1 & 0 \\ -0.5 & 1 \end{pmatrix}$$
, $I = \begin{pmatrix} 0.2 \\ 0 \end{pmatrix}$, $u(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\eta = 1$.

- Potential: $\boldsymbol{u}(t) \in \mathbb{R}^n$
- External charging: $I \in \mathbb{R}^n$
- Spikes: $s(t) \in \{0,1\}^n$
- Connectivity: $C \in \mathbb{R}^{n \times n}$
- Firing rate: x(t)

•
$$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - C\boldsymbol{s}(t) + \boldsymbol{I}$$

$$\begin{array}{c} \overset{0.2}{1} \\ t = 1000 \end{array} \qquad \begin{array}{c} \overset{0.2}{1} \\ \overset{0}{1} \\ \overset{0}{1}$$

[Barrett-Denève-Machens, NIPS 2013]

[Barrett-Denève-Machens, NIPS 2013]

Using an "optimization problem" to analyze the firing rate of an integrate-and-fire SNN.

(**C**,**I**)

firing rate

[Barrett-Denève-Machens, NIPS 2013]

[Barrett-Denève-Machens, NIPS 2013]

[Barrett-Denève-Machens, NIPS 2013]

[Barrett-Denève-Machens, NIPS 2013]

The first proof for the firing rate of integrate-and-fire SNNs efficiently solving the non-negative least squares problem.

• Confirm the empirical discovery of [Barret-Denève-Machens 2013].

The first proof for the firing rate of integrate-and-fire SNNs efficiently solving the non-negative least squares problem.

• Confirm the empirical discovery of [Barret-Denève-Machens 2013].

What if there are infinitely many solutions?

The first proof for the firing rate of integrate-and-fire SNNs efficiently solving the non-negative least squares problem.

• Confirm the empirical discovery of [Barret-Denève-Machens 2013].

What if there are infinitely many solutions?

• Further show that the firing rate of integrate-and-fire SNN efficiently finds the sparse solution (in the ℓ_1 sense)

The first proof for the firing rate of integrate-and-fire SNNs efficiently solving the non-negative least squares problem.

• Confirm the empirical discovery of [Barret-Denève-Machens 2013].

What if there are infinitely many solutions?

• Further show that the firing rate of integrate-and-fire SNN efficiently finds the sparse solution (in the ℓ_1 sense), by implementing a primal-dual + projected gradient descent algorithm.

Given
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^{m}$, and $\epsilon > 0$. Suppose A satisfies some *regular* conditions. Set $C = \begin{pmatrix} A^{\top}A & -A^{\top}A \\ -A^{\top}A & A^{\top}A \end{pmatrix}$, $I = \begin{pmatrix} A^{\top}b \\ -A^{\top}b \end{pmatrix}$, and properly set the integrate-and-fire SNN.

Given
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^{m}$, and $\epsilon > 0$. Suppose A satisfies some *regular*
conditions. Set $C = \begin{pmatrix} A^{\top}A & -A^{\top}A \\ -A^{\top}A & A^{\top}A \end{pmatrix}$, $I = \begin{pmatrix} A^{\top}b \\ -A^{\top}b \end{pmatrix}$, and properly set the
integrate-and-fire SNN. Let x^* be the optimal solution to the ℓ_1
minimization problem.

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} \|x\|_1$$

Given
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^{m}$, and $\epsilon > 0$. Suppose A satisfies some *regular*
conditions. Set $C = \begin{pmatrix} A^{\top}A & -A^{\top}A \\ -A^{\top}A & A^{\top}A \end{pmatrix}$, $I = \begin{pmatrix} A^{\top}b \\ -A^{\top}b \end{pmatrix}$, and properly set the
integrate-and-fire SNN. Let x^* be the optimal solution to the ℓ_1
minimization problem.

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & \|x\|_1 \\ \text{s.t.} & Ax = b \end{array}$$

When $t \ge \Omega(\frac{n^3}{\epsilon^2})$, we have (i) $\|\boldsymbol{b} - A\boldsymbol{x}(t)\|_2 \le \epsilon \cdot \|\boldsymbol{b}\|_2$ and (ii) $\|\boldsymbol{x}(t)\|_1 - \|\boldsymbol{x}^*\|_1 \le \epsilon \cdot \|\boldsymbol{x}^*\|_1$.

Given
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^{m}$, and $\epsilon > 0$. Suppose A satisfies some *regular*
conditions. Set $C = \begin{pmatrix} A^{\top}A & -A^{\top}A \\ -A^{\top}A & A^{\top}A \end{pmatrix}$, $I = \begin{pmatrix} A^{\top}b \\ -A^{\top}b \end{pmatrix}$, and properly set the
integrate-and-fire SNN. Let x^* be the optimal solution to the ℓ_1
minimization problem.

$$\begin{split} \min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} & \|x\|_1 \\ \text{s.t.} & Ax = b \end{split} \\ \end{aligned}$$

$$\begin{aligned} \text{When } t \geq \Omega(\frac{n^3}{\epsilon^2}) \text{, we have (i) } \|b - Ax(t)\|_2 \leq \epsilon \cdot \|b\|_2 \text{ and} \\ \text{(ii) } \|x(t)\|_1 - \|x^*\|_1 \leq \epsilon \cdot \|x^*\|_1. \end{aligned}$$

	Primal SNN	Dual SNN
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	
Optimization problem		

	Primal SNN	Dual SNN
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ (ℓ_1 minimization) s.t. $A\boldsymbol{x} = \boldsymbol{b}$	

	Primal SNN	Dual SNN
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - (A - A)\boldsymbol{s}(t) + \boldsymbol{b}$
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ s.t. $A\boldsymbol{x} = \boldsymbol{b}$ (ℓ_1 minimization)	

	Primal SNN	Dual SNN	
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - (A - A)\boldsymbol{s}(t) + \boldsymbol{b}$	
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ s.t. $A\boldsymbol{x} = \boldsymbol{b}$ (ℓ_1 minimization)	$\begin{array}{ll} \max_{\boldsymbol{v} \in \mathbb{R}^m} \boldsymbol{b}^{T} \boldsymbol{v} & \text{(The dual of} \\ \text{s.t. } \ \boldsymbol{A}^{T} \boldsymbol{v}\ _{\infty} \leq 1 \ell_1 \text{ minimization)} \end{array}$	

	Primal SNN	Dual SNN	
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - (A - A)\boldsymbol{s}(t) + \boldsymbol{b}$	
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ s.t. $A\boldsymbol{x} = \boldsymbol{b} $ (ℓ_1 minimization)	$\begin{array}{ll} \max_{\boldsymbol{v} \in \mathbb{R}^m} \boldsymbol{b}^{T} \boldsymbol{v} & \text{(The dual of} \\ \text{s.t. } \ A^{T} \boldsymbol{v}\ _{\infty} \leq 1 \ell_1 \text{ minimization)} \end{array}$	

v(t) is a projected gradient descent algorithm for dual program with non-standard projection.

Key Technique – A Dual View of SNN			External ch ≈ Gradie	arging nt	
	Primal SNN		Dual S	NN	
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	v(t +	$1) = \boldsymbol{v}(t) - (A$	$-A)\mathbf{s}(t)$	+ <i>b</i>
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ s.t. $A\boldsymbol{x} = \boldsymbol{b} $ (ℓ_1 minimization)	$\max_{\boldsymbol{v}\in\mathbb{R}^m} \boldsymbol{b}$ s.t. A	$\ \mathbf{v} \ _{\infty} \leq 1$	(The ℓ_1 mini	dual of imization)
		v(t) is a	a projected g	radient	descent

non-standard projection.

Key Teo	chnique – A Dual View of S	Spiking effect ≈ Projection
	Primal SNN	Dual SNN
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - (A - A)\boldsymbol{s}(t) + \boldsymbol{b}$
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ s.t. $A\boldsymbol{x} = \boldsymbol{b} $ (ℓ_1 minimization)	$\max_{\boldsymbol{v} \in \mathbb{R}^m} \boldsymbol{b}^{T} \boldsymbol{v} \qquad \text{(The dual of s.t. } \ A^{T} \boldsymbol{v}\ _{\infty} \leq 1 \ell_1 \text{ minimization)}$
		 v(t) is a projected gradient descent algorithm for dual program with non-standard projection.

	Primal SNN		Primal SNN Dual SNN		NN
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A \\ -A^{T}A \end{pmatrix}$	$ \frac{-A^{T}A}{A^{T}A} \mathbf{s}(t) + \begin{pmatrix} A^{T}\mathbf{b} \\ -A^{T}\mathbf{b} \end{pmatrix} $	$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - (A$	$-A)\mathbf{s}(t) + \mathbf{b}$	
Optimization problem	$\min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1$ s.t. $A\boldsymbol{x} = \boldsymbol{b}$	ℓ_1 minimization)	$\max_{\boldsymbol{v} \in \mathbb{R}^m} \boldsymbol{b}^{T} \boldsymbol{v}$ s.t. $\ A^{T} \boldsymbol{v}\ _{\infty} \leq 1$	(The dual of ℓ ₁ minimization)	
The firing solves the	rate in primal SNN e primal program.	KKT conditions	<pre>v(t) is a projected g algorithm for dual non-standard</pre>	gradient descent program with projection.	
Key Technique – A Dual View of SN		SNN Spikes are non-monotone and difficult to analyze!			
-----------------------------------	--	---			
	Primal SNN	Dual SNN			
Dynamics	$\boldsymbol{u}(t+1) = \boldsymbol{u}(t) - \begin{pmatrix} A^{T}A & -A^{T}A \\ -A^{T}A & A^{T}A \end{pmatrix} \boldsymbol{s}(t) + \begin{pmatrix} A^{T}\boldsymbol{b} \\ -A^{T}\boldsymbol{b} \end{pmatrix}$	$\boldsymbol{v}(t+1) = \boldsymbol{v}(t) - (A - A)\boldsymbol{s}(t) + \boldsymbol{b}$			
Optimization problem	$ \min_{\boldsymbol{x} \in \mathbb{R}^n} \ \boldsymbol{x}\ _1 $ s.t. $A\boldsymbol{x} = \boldsymbol{b}$ (ℓ_1 minimization)	$ \max_{\boldsymbol{v} \in \mathbb{R}^m} \boldsymbol{b}^{T} \boldsymbol{v} $ (The dual of s.t. $\ A^{T} \boldsymbol{v}\ _{\infty} \leq 1$ ℓ_1 minimization)			
The firing i solves the	rate in primal SNN e primal program. KKT conditions Perturbation theory	 v(t) is a projected gradient descent algorithm for dual program with non-standard projection. 			

Perspectives – Natural Algorithms

Perspectives – Natural Algorithms

"How algorithmic ideas can enrich our understanding of nature?" - Bernard Chazelle "How algorithmic ideas can enrich our understanding of nature?" - Bernard Chazelle

Through the lens of natural algorithms, can we understand SNNs more via its algorithmic power and even discover new algorithmic ideas?

"How algorithmic ideas can enrich our understanding of nature?" - Bernard Chazelle

Through the lens of natural algorithms, can we understand SNNs more via its algorithmic power and even discover new algorithmic ideas?

In this work, we show that integrate-and-fire SNN uses its firing rate to efficiently solve some optimization problems in a primal-dual way!

• In this work, we give the first proof for the firing rate of integrate-and-fire SNNs efficiently solving non-negative least squares problem and ℓ_1 minimization problem.

- In this work, we give the first proof for the firing rate of integrate-and-fire SNNs efficiently solving non-negative least squares problem and ℓ_1 minimization problem.
- Related works.
 - Universality and computational complexity.
 - SNN is able to simulate Turing machines, random access machines (RAM), and threshold circuits etc. [Maa96, Maa97b, Maa99, MB01].
 - Using SNNs to solve computational/optimization problems.
 - Sparse coding [ZMD11, Tan16, TLD17], dictionary learning [LT18], pattern recognition [DC15, KGM16, BMF+17], and non-negative least squares[BDM13].
 - Implementing MCMC to solve traveling salesman problem (TSP) and constraint satisfaction problem (CSP) [BBNM11, JHM14, Maa15, JHM16].
 - Assemblies of neurons and random projection [ADMPSV18, LPVM18, PV19].
 - The efficiency of SNNs in solving computational problems.
 - Solving Winner-Take-All (WTA) problem, similarity testing, and neural coding [LMP17a, LMP17b, LMP17c, LM18].

Very few works provide provable analysis on the efficiency of SNN algorithms!

- In this work, we give the first proof for the firing rate of integrate-and-fire SNNs efficiently solving non-negative least squares problem and ℓ_1 minimization problem.
- Related works.
 - Universality and computational complexity.
 - SNN is able to simulate Turing machines, random access machines (RAM), and threshold circuits etc. [Maa96, Maa97b, Maa99, MB01].
 - Using SNNs to solve computational/optimization problems.
 - Sparse coding [ZMD11, Tan16, TLD17], dictionary learning [LT18], pattern recognition [DC15, KGM16, BMF+17], and nonnegative least squares[BDM13].
 - Implementing MCMC to solve traveling salesman problem (TSP) and constraint satisfaction problem (CSP) [BBNM11, JHM14, Maa15, JHM16].
 - Assemblies of neurons and random projection [ADMPSV18, LPVM18, PV19].
 - The efficiency of SNNs in solving computational problems.
 - Solving Winner-Take-All (WTA) problem, similarity testing, and neural coding [LMP17a, LMP17b, LMP17c, LM18].

Very few works provide provable analysis on the efficiency of SNN algorithms!

- In this work, we give the first proof for the firing rate of integrate-and-fire SNNs efficiently solving non-negative least squares problem and ℓ_1 minimization problem.
- Related works.
 - Universality and computational complexity.
 - SNN is able to simulate Turing machines, random access machines (RAM), and threshold circuits etc. [Maa96, Maa97b, Maa99, MB01].
 - Using SNNs to solve computational/optimization problems.
 - Sparse coding [ZMD11, Tan16, TLD17], dictionary learning [LT18], pattern recognition [DC15, KGM16, BMF+17], and nonnegative least squares[BDM13].
 - Implementing MCMC to solve traveling salesman problem (TSP) and constraint satisfaction problem (CSP) [BBNM11, JHM14, Maa15, JHM16].
 - Assemblies of neurons and random projection [ADMPSV18, LPVM18, PV19].
 - The efficiency of SNNs in solving computational problems.
 - Solving Winner-Take-All (WTA) problem, similarity testing, and neural coding [LMP17a, LMP17b, LMP17c, LM18].
- Next step?
 - Giving more rigorous analysis for the efficiency of other SNN algorithms!

Very few works provide provable analysis on the efficiency of SNN algorithms!

- In this work, we give the first proof for the firing rate of integrate-and-fire SNNs efficiently solving non-negative least squares problem and ℓ_1 minimization problem.
- Related works.
 - Universality and computational complexity.
 - SNN is able to simulate Turing machines, random access machines (RAM), and threshold circuits etc. [Maa96, Maa97b, Maa99, MB01].
 - Using SNNs to solve computational/optimization problems.
 - Sparse coding [ZMD11, Tan16, TLD17], dictionary learning [LT18], pattern recognition [DC15, KGM16, BMF+17], and nonnegative least squares[BDM13].
 - Implementing MCMC to solve traveling salesman problem (TSP) and constraint satisfaction problem (CSP) [BBNM11, JHM14, Maa15, JHM16].
 - Assemblies of neurons and random projection [ADMPSV18, LPVM18, PV19].
 - The efficiency of SNNs in solving computational problems.
 - Solving Winner-Take-All (WTA) problem, similarity testing, and neural coding [LMP17a, LMP17b, LMP17c, LM18].
- Next step?
 - Giving more rigorous analysis for the efficiency of other SNN algorithms!

