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• [Barret-Denève-Machens 2013] empirically	showed	a	connection	between	
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• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example

1

2

0.2

0

𝑡 = 6
0

𝜂

0

𝜂

#spikes = 1;	𝒙4 𝑡 = 0.167; 𝒖4 𝑡 = 0.2

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example

1

2

0.2

0

𝑡 = 7
0

𝜂

0

𝜂

#spikes = 1;	𝒙4 𝑡 = 0.143; 𝒖4 𝑡 = 0.4

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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2
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0

𝑡 = 8
0

𝜂

0

𝜂

#spikes = 1;	𝒙4 𝑡 = 0.125; 𝒖4 𝑡 = 0.6

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰

Chi-Ning	Chou	(Harvard	University) 4/10



On	the	Algorithmic	Power	of	Spiking	Neural	Networks

Example
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2
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0

𝑡 = 9
0

𝜂

0

𝜂

#spikes = 1;	𝒙4 𝑡 = 0.111; 𝒖4 𝑡 = 0.8

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example
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2
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0

𝑡 = 10
0

𝜂

0

𝜂

#spikes = 1;	𝒙4 𝑡 = 0.1; 𝒖4 𝑡 = 1

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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0

𝑡 = 10
0

𝜂

0

𝜂

#spikes = 2;	𝒙4 𝑡 = 0.2; 𝒖4 𝑡 = 1

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
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Example
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2

0.2

0

𝑡 = 10
0

𝜂

0

𝜂

−1

0.5

#spikes = 2;	𝒙4 𝑡 = 0.2; 𝒖4 𝑡 = 1

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 0.5

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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0

𝑡 = 11
0

𝜂

0

𝜂

#spikes = 2;	𝒙4 𝑡 = 0.182; 𝒖4 𝑡 = 0.2

#spikes = 0;	𝒙5 𝑡 = 0; 𝒖5 𝑡 = 1

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
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Example

1

2

0.2

0

𝑡 = 11
0

𝜂

0

𝜂

#spikes = 2;	𝒙4 𝑡 = 0.182; 𝒖4 𝑡 = 0.2

#spikes = 1;	𝒙5 𝑡 = 0.09; 𝒖5 𝑡 = 1

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example

1

2

0.2

0

𝑡 = 11
0

𝜂

0

𝜂−1

0

#spikes = 2;	𝒙4 𝑡 = 0.182; 𝒖4 𝑡 = 0.2

#spikes = 1;	𝒙5 𝑡 = 0.09; 𝒖5 𝑡 = 1

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example

1

2

0.2

0

𝑡 = 12
0

𝜂

0

𝜂

#spikes = 2;	𝒙4 𝑡 = 0.167; 𝒖4 𝑡 = 0.4

#spikes = 1;	𝒙5 𝑡 = 0.83; 𝒖5 𝑡 = 0

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example

1

2

0.2

0

𝑡 = 1000

#spikes = 200;	𝒙4 𝑡 = 0.200; 𝒖4 𝑡 = 1

#spikes = 99;	𝒙5 𝑡 = 0.099; 𝒖5 𝑡 = 0.5

0

𝜂

0

𝜂

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Example

1

2

0.2

0

𝑡 = 1000

#spikes = 200;	𝒙4 𝑡 = 0.200; 𝒖4 𝑡 = 1

#spikes = 99;	𝒙5 𝑡 = 0.099; 𝒖5 𝑡 = 0.5

0

𝜂

0

𝜂

• Setup:	𝐶 = 1 0
−0.5 1 , 𝑰 = 0.2

0 , 𝒖 0 = 0
0 , 𝜂 = 1.

• Potential:	𝒖 𝑡 ∈ ℝ-

• External	charging:	𝑰 ∈ ℝ-

• Spikes:	𝒔 𝑡 ∈ 0,1 -

• Connectivity:	𝐶 ∈ ℝ-×-

• Firing	rate:	𝒙 𝑡
• 𝒖 𝑡 + 1 = 𝒖 𝑡 − 𝐶𝒔 𝑡 + 𝑰
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Our	Contributions

The	first proof	for the	firing	rate of	integrate-and-fire	SNNs	efficiently
solving	the	non-negative	least	squares	problem.

• Confirm	the	empirical	discovery	of	[Barret-Denève-Machens 2013].
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• Further	show	that	the	firing	rate of	integrate-and-fire	SNN	efficiently finds	the	
sparse	solution (in	the	ℓ4 sense)
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Our	Contributions

The	first proof	for the	firing	rate of	integrate-and-fire	SNNs	efficiently
solving	the	non-negative	least	squares	problem.

• Confirm	the	empirical	discovery	of	[Barret-Denève-Machens 2013].

Chi-Ning	Chou	(Harvard	University)

What	if	there	are	infinitely	many	solutions?
• Further	show	that	the	firing	rate of	integrate-and-fire	SNN	efficiently finds	the	
sparse	solution (in	the	ℓ4 sense),	by	implementing	a	primal-dual	+	projected	
gradient	descent	algorithm.
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Given	𝐴 ∈ ℝe×-, 𝒃 ∈ ℝe,	and	𝜖 > 0.	Suppose	𝐴 satisfies	some	regular	

conditions.	Set	𝐶 = 𝐴i𝐴 −𝐴i𝐴
−𝐴i𝐴 𝐴i𝐴

, 𝑰 = 𝐴i𝒃
−𝐴i𝒃

,	and	properly	set	the	

integrate-and-fire	SNN.	
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Given	𝐴 ∈ ℝe×-, 𝒃 ∈ ℝe,	and	𝜖 > 0.	Suppose	𝐴 satisfies	some	regular	

conditions.	Set	𝐶 = 𝐴i𝐴 −𝐴i𝐴
−𝐴i𝐴 𝐴i𝐴

, 𝑰 = 𝐴i𝒃
−𝐴i𝒃

,	and	properly	set	the	

integrate-and-fire	SNN.	Let	𝒙∗ be	the	optimal	solution	to	the	ℓ𝟏
minimization	problem.
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Given	𝐴 ∈ ℝe×-, 𝒃 ∈ ℝe,	and	𝜖 > 0.	Suppose	𝐴 satisfies	some	regular	

conditions.	Set	𝐶 = 𝐴i𝐴 −𝐴i𝐴
−𝐴i𝐴 𝐴i𝐴

, 𝑰 = 𝐴i𝒃
−𝐴i𝒃

,	and	properly	set	the	

integrate-and-fire	SNN.	Let	𝒙∗ be	the	optimal	solution	to	the	ℓ𝟏
minimization	problem.

min
𝒙∈ℝ]

								 𝒙 4													
s.t.									𝐴𝒙 = 𝒃					

When	𝑡 ≥ Ω(-
m

no
),	we	have	(i)	 𝒃 − 𝐴𝒙 𝑡 5 ≤ 𝜖 ⋅ 𝒃 5 and	

(ii)		 𝒙 𝑡 4 − 𝒙∗ 4 ≤ 𝜖 ⋅ 𝒙∗ 4.
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Given	𝐴 ∈ ℝe×-, 𝒃 ∈ ℝe,	and	𝜖 > 0.	Suppose	𝐴 satisfies	some	regular	

conditions.	Set	𝐶 = 𝐴i𝐴 −𝐴i𝐴
−𝐴i𝐴 𝐴i𝐴

, 𝑰 = 𝐴i𝒃
−𝐴i𝒃

,	and	properly	set	the	

integrate-and-fire	SNN.	Let	𝒙∗ be	the	optimal	solution	to	the	ℓ𝟏
minimization	problem.

min
𝒙∈ℝ]

								 𝒙 4													
s.t.									𝐴𝒙 = 𝒃					

When	𝑡 ≥ Ω(-
m

no
),	we	have	(i)	 𝒃 − 𝐴𝒙 𝑡 5 ≤ 𝜖 ⋅ 𝒃 5 and	

(ii)		 𝒙 𝑡 4 − 𝒙∗ 4 ≤ 𝜖 ⋅ 𝒙∗ 4.
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Spikes	are	non-monotone
and	difficult	to	analyze!
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Through	the	lens	of	natural	algorithms,	can	we	understand	SNNs	more	via	its	
algorithmic	power	and	even	discover	new	algorithmic	ideas?

“How	algorithmic	ideas	can	enrich	our	understanding	of	nature?”
- Bernard	Chazelle

In	this	work,	we	show	that	integrate-and-fire	SNN	uses	its	firing	rate	to	
efficiently solve	some	optimization	problems	in	a	primal-dual way!
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