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Extended Church-Turing Thesis (ECTT)

[%‘ Feasible/Efficient computation in
——— the physical world is in BPP.

NP-complete Q: Can any realistic model solve a problem
beyond BPP?

A: Quantum computation!?

Q: Is BQP realizable? Does quantum
computation break ECTT?
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From Theory to the Real Physical World

[Shor 1994]: Quantum computer can solve Factoring in polynomial time!

NP-complete

Q: Can we really build scalable quantum computer?
(It requires 2000+ qubits to demonstrate Shor’s algorithm.)

Q: Maybe there’s fundamental physical barriers?
(E.g., noise stabillity, error correction, etc.)

Q: Can we refute ECTT with near-term technology?
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A compromise between theory and experiment

Quantum Supremacy

Refute ECTT in a NISQ
(Noisy Intermediate-Scale
Quantum) system!?

Popular candidates:

*| Random circuit sampling

e Boson sampling
e QP

Experiment

2017 IBM 50 qubits

2018 Intel 49 qubits

2019 IBM 83 qubits

2019 Google 53 qubits
2020 IBM 65 qubits

2020 Pan’s group 60 qubits
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Random Circuit Sampling

The lead-candidate used by Google’s Sycamore

Challenger Prover
(E.g., Quantum skeptics) (E.g., Google)

1. Randomly pick Uy, ...,U,,.

2. Pick input state, e.g., |0™).

3. Sample many strings from
the output distribution ¢c.

4. Verifty samples follow qc.

Intuition: Without quantumness, the prover requires exponential time!?
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How to Verify?

Challenger Prover « Efficiency: The verification
(E.g., Quantum skeptics) (E.g., Google) should be scalable.

e Completeness: If the Prover’s

. distribution is close to gc, then
2. Pick input state, e.g., |0™). accept w.h.p

1. Randomly pick Uy, ..., U, .

3. Sample many strings from e Soundness: If the distribution
the output distribution 4c. came from a classical device,

4. Verify samples follow ¢c. then reject w.h.p.
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Linear Cross-Entropy Benchmarking

A statistic for verifying RCS-based quantum supremacy

Definition (Linear XEB). e Efficiency: Need to compute
the marginal probability gc ().

Let C be an n-qubit quantum circuit _ Exponential time @

and p be a distribution over n-bit

strings. The Linear XEB fidelity of p * Completeness: When (' is

w.rt. O is defined as random enough: F¢(qc) = 1.

e Soundness: When p is the
uniform distribution: F-(p) ~ 0.
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U Ue for achieving high Linear XEB?
-

L« canwe leverage the structure of the circuits
' and the definition of Linear XEB!?

Two difficulties to spoof Linear XEB:

* T[heoretically, challenging to analyze.

 Experimentally, the verification is inefficient.
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Observation: The marginal of an output qubit only depends on its /ightcone!

1 e Calculating the marginal of output 1

only requires O(2%) time instead of
2 0O(2%) time.

1

3  For a depth-d circuit, we can
calculate the marginal of each output

qubit in time O(2%%).

° Idea: Use the marginal of each output
5 qubit to perform biased sampling!
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3.
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Using Lightcone

and of size L.
Calculate the marginal of each output qubits in time O(25).

Sample the output qubits independently:

e |f the output qubits were chosen, then sample according
to the marginal.
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A Classical Algorithm Spoofing Linear XEB
Using Lightcone

1. Find a set of output qubits whose lightcones are disjoint
and of size L.

2. Calculate the marginal of each output qubits in time O(2"4).

3. Sample the output qubits independently:

e |f the output qubits were chosen, then sample according
to the marginal.

* If not, then sample uniformly.

Theoretical analysis? Empirical performance®? Other variants?
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Theorem. Corollary.

Let C' be an n-qubit depth-d circuit For Google’s 2D nearest
with (i) lightcone size at most . and neighbors circuit (with Haar
(i) each 2-qubit gate is Haar random, random gates), when d=0(log n),

then the algorithm outputs a our algorithm outputs a
distribution p in time poly(n, 2") and distribution p in time 2°(¢") and

—d\n /L . 1
B[F(p) 2 (14157 — 1 B[Fe()) > s
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Intuition

Linear XEB Google’s Noisy Simulation

as a Random Walk ol
Noises are inherent in the 4+

[]-"c(qc)] real-world quantum devices. I+

i

:I: :l: Our Lightcone Algorithm
:I: :I: Picking disjoint lightcones =

adding noise to non-chosen

Certain non- negatlve tensor network output CIUbitS.
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Perspectives

We are still few steps away from the quantum supremacy regime?

* There is a classical algorithm
spoofing Linear XEB (in shallow
circuits)!

* Noise Iin real-world quantum
devices Is essential and subtle.

e A random walk picture for
Linear XEB.
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Future Directions

Quantum supremacy requires both theory and experiment!

Theory Experiment New Proposal?

* More scalable quantum
supremacy protocol?

e Deeper understanding in e |ncrease #qubits, better
Linear XEB. noise-tolerance, etc.

* More solid complexity-
theoretic foundation on
the classical hardness?

e (Classical hardness o Faster verification.

[Aaronson-Chen 17] [Bouland et

al. 19][Aaronson-Guu 20. e Classical simulation.

Thanks for your attention!

18



