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e Input: the truth table of an n-bit function f and a size parameter s.

« Output: “Yes” if there’s a circuit of size at most s for f; otherwise “No”.
 Note that the input length is O(2").

+ MCSP € NP, (2

" Verification: evaluate the

— ee— l witness circuit on all inputs G G G

lof1]+Joft[t]rfof1[ofof1] : " AR A
Input: the truth table of Take O(27 - 5) = poly(2") time | CoY
Witness: a circuit of size at most s

e But proving MCSP & P or MCSP being NP-hard require new technigues!
* Perebor conjecture: brute-force search is the best algorithm!*?
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being NP-hard = average-case and worst-case
hardness in NP are the same, i.e., no Heuristica.

Cryptography

o [Kabanets-Cai’00]: MCSP &€ BPP = no one-way
function.

Learning Theory

[Carmosino et al.’16]: MCSP € P = efficient PAC Allender-Das’14]: SZK < MCSF.
learning for P/poly. Impagliazzo et al.’18]: IO = SAT <p MCSF.

MCSP has connections to many sub-fields in TCS!
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Computational Problems in the Quantum World are Different!

* A gquantum circuit corresponds to a unitary transformation!

Input qubits
l|x>

Uc

Ancilla qubits[ 0)

[ o

* Three natural types of computation:
+ Boolean function.

To properly define the corresponding MCSP,
+ Quantum state. one needs to handle “error probability” and
+ Unitary transformation. “distance” between quantum objects.
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e Parameters:

Input qubits

+ Number of ancilla qubits: ¢ )
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+ Soundsness: [ 0)

* Input: The truth table of an n-bit boolean function f and a size parameter s.

* Goal: Distinguish the following two cases.

+ Yes: 3 circuit € of size < s5,s.t. Vx € {0,1}", [{(f(x0) | ®L,., )E|x,0)| > «.
+ No: V circuit € of size < s, Ix € {0,1}"s.t. [{((f0) | ® L,,,_1)E | x,0")|| < p.

Note that MQCSP is a promise problem!
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A Bird-Eye View

Results

Informal Theorem Index

(Formal Theorem Index)

MQCSP € QCMA
MQCSP ¢ BQP = No qOWF

Theorem 1.4 (Theorem 3.9)
Theorem 1.4 (Theorem 4.8)

SZK < MQCSP
multiMQCSP is NP-hard under a natural gatle set
i + MQCSP € BQP = NP C coRQP
MQCSP PAC lcarning for BQP/poly <+ MQCSP ¢ BPP
(Del. 3.2) BQP learning < MQCSP € BQP
- MQCSP € BQP = BQE ¢ BQC[n*], Vk & N_
MQCSP € BQP = BQPYMA # BQCnk], Vk € N,
MQCSP € BQP = Hardness amplification
Hardness magnification for MQCSP

Theorem 1.4 (Theorem 3.13)
Theorem 1.4 (Theorem 3.14)
Theorem 1.4 (Theorem 4.10)
Theorem 1.5 (Theorem 4.12)
Theorem 1.6 (Theorem 4.14)
Theorem 1.7 (Theorem 4.19)
Theorem 1.7 (Theorem 4.22)
Theorem 1.8 (Theorem 4.20)
Theorcm 1.9 (Theorem 4.22)

QETH = quantum hardness of MQCSP*

Theorem 1.10 (Theorem 4.27)

UMCSP € QCMA
Search-to-decision reduction for UMCSP
gap-MQCSP < UMCSP
UMCSP UMCSP € BQP
(Del. 5.1) =» No pscudorandom unitaries and no qOWF

Theorem 1.11 (Theorem 5.5)
Theorem 1.12 (Theorem 5.16)
Theorem 1.12 (Theorem 5.23)

(Theorem 5.241, Corollary 5.25)

1O + UMCSP € BQP =- NP C coRQP

(Corollary 5.26)

UMCSP € BQP =- Hardness amplification for BQP
UMCSP ¢ BQP = BQE ¢ BQP[n*], Vk ¢ N

(Corollary 5.27)
(Corollary 5.28)

SMCSP can be verilied via QCMA

Theorem 1.11 (Theorem 5.9)

Search-to-decision reduction for SMCSP
Self-reduction for SMCSP

Theorem 1.12 (Theorem 5.18)
Theorem 1.12 (Theorem 5.20)

SMCSP SMCSP € BQP
(Def. 5.2) = No pscudorandom states and no qOWF
Assume conjectures [rom physics
SMCSP = Estimating wormhole’s volume
Succinct stale tomography < SMCSP

Theorem 1.13 (Theorem 5.30)

Theorem 1.13 (Theorem 5.31)
Theorem 1.13 (Theorem 5.33)

Table 1: Summary of our results. A result with color Blue is a direct extension [rom its classical

analog. A result with color Yellow requires additional techniques. A result with color Red is

unique in the quantum sctting.
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* The introduction of ancilla qubits.

+ Different number of ancilla qubits gives different circuit complexity!
+ When the number of ancilla qubits is super-linear, a direct classical simulation becomes
super-polynomiall

* Various universal guantum gate sets.

+ For some results we only know how to start with a certain gate set.
+ Although we can use Solovay-Kitaev theorem to generalize other gate sets, this causes
overhead in circuit complexity.
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 |Input:
+ Arbitrarily many copies of an n-qubit state | ).

+ Size parameter: s.
. Goal: Determine if 3 circuit € of size < s, s.t. ||((w| @ NE | 0| ~ 1

{ |0)
Input qubits N

}21 1 & [ Rlwel
Ancilla qubits l |0)

10)

- Remark 1: Can define a version with “classical description” of |i/) as the input.
 Remark 2: Can define a version for unitary transformation analogously.
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e | Search-to-decision reduction for SMCSP|and UMCSP. It becomes more

 Self reduction for SMCSP. subtle when
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 Gap-MQCSP reduces to UMCSP.

 Key ideas: Leveraging the “reversibility” of quantum circuits!
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« SMCSP breaks pseudorandom states and quantum OWF.

PRs dOWF

e Solving SMCSP is “equivalent” to estimating the wormhole volume under

Volume=Complexity h SMCSP

The volume of a Conjecture The CompleXIty of Assuming a dictionary

[Susskind’16] “thermalfield map in AdS/CFT is
wormhole ~ efficiently computable

double state” q CFT-SMCSP
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Quantum
algorithms and
reductions for
(quantum) MCSPs

* Implications of quantum
algorithms for
(quantum) MCSPs.

* A gquantum search-to-
decision reduction for
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