(Nearly) Efficient Algorithms for the
 Graph Matching Problem

Tselil Schramm
(Harvard/MIT)

with Boaz Barak, Chi-Ning Chou, Zhixian Lei \& Yueqi Sheng (Harvard)

graph matching problem (approximate graph isomorphism)

input: two graphs on n vertices
goal: find permutation of vertices that maximizes \# shared edges

$$
\max _{\pi}\left\langle A_{G_{0}}, \pi\left(A_{G_{1}}\right)\right\rangle
$$

G_{0}

G_{1}

graph matching problem (approximate graph isomorphism)

input: two graphs on n vertices
goal: find permutation of vertices that maximizes \# shared edges

graph matching problem (approximate graph isomorphism)

input: two graphs on n vertices
goal: find permutation of vertices that maximizes \# shared edges

$$
\max _{\pi}\left\langle A_{G_{0}}, \pi\left(A_{G_{1}}\right)\right\rangle
$$

G_{0}

G_{1}

graph matching problem (approximate graph isomorphism)

input: two graphs on n vertices
goal: find permutation of vertices that maximizes \# shared edges

computationally hard (of course)

NP-hard: reduction from quadratic assignment problem (non-simple graphs).
[Lawler'63]
also: reduction from sparse random 3-SAT to approximate version
[O’Donnell-Wright-Wu-Zhou'14]

practitioners: undeterred

- computational biology [e.g. Singh-Xu-Berger‘08]
- de-anonymization [e.g. Narayanan-Shmatikov'09]
- social networks [e.g. Korula-Lattanzi'14]
- image alignment [e.g. Cho-Lee'12]
- machine learning [e.g. Cour-Srinivasan-Shi'07]
- pattern recognition, e.g.
"thirty years of graph matching in pattern recognition"
[Conte-Foggia-Sansone-Vento'04]
"robust average-case graph isomorphism"

average case: correlated random graphs

structured model

"robust average-case graph isomorphism"
average case: correlated random graphs
structured model

"robust average-case graph isomorphism"

average case: correlated random graphs

structured model

$$
\approx p \gamma^{2} \cdot\binom{n}{2}
$$

"null" model

information theoretic limit

for which p, γ can we recover π ?

Theorem [Cullina-Kivayash'16\&17]
Iff $p \gamma^{2}>\frac{\log n}{n}$, with high probability π is the unique maximizing permutation.

algorithms for robust average case?

algorithms for robust average case?

algorithms for robust average case?

average-case graph isomorphism algorithms fail.
e.g. spectral algorithm

algorithms for robust average case?

average-case graph isomorphism algorithms fail.
e.g. spectral algorithm

starting from a seed

starting from a seed

match vertices with similar adjacency into S

starting from a seed

match vertices with similar adjacency into S

iff seed $\geq \Omega\left(n^{\epsilon}\right)$, the seeded algorithm approximately recovers π. [Yartseva-Grossglauser'13]

our results

Theorem

 time algorithm that recovers π on $n-o(n)$ of the vertices $\mathrm{w} / \mathrm{prob} \geq 0.99$.
*we allow $\gamma=\Omega\left(\frac{1}{\log \log n}\right)$
$G(n, p)$ average degrees:

our results

Theorem

 time algorithm that recovers π on $n-o(n)$ of the vertices $\mathrm{w} / \mathrm{prob} \geq 0.99$.

$$
\text { *we allow } \gamma \geq \frac{1}{\log ^{o(1)} n}
$$

If p, γ are as above then there is a poly (n) time distinguishing algorithm for the structured vs null distributions.

our approach: small subgraphs

hypothesis testing: correlation of subgraph counts
recovery: match rare subgraphs
seedless algorithms!

outline

- distinguishing/hypothesis testing
- recovery
- concluding

outline

- distinguishing/hypothesis testing
- recovery
- concluding

distinguishing/hypothesis testing

Given G_{0}, G_{1} sampled equally likely from structured or null, decide $w /$ prob $1-o(1)$ from which.

brute force: is there a π with $\geq p \gamma^{2} n^{2}$ matched edges?

...counting triangles?

$$
\operatorname{cor}_{K_{3}}\left(G_{0}, G_{1}\right):=\left(\# K_{3} \text { in } G_{0}\right)\left(\# \mathrm{~K}_{3} \text { in } G_{1}\right)
$$

...counting triangles?

$$
\operatorname{cor}_{K_{3}}\left(G_{0}, G_{1}\right):=\left(\# K_{3} \text { in } G_{0}\right)\left(\# K_{3} \text { in } G_{1}\right) .
$$

triangle counts in G_{0}, G_{1} are independent

$$
\mathbb{E}\left[\operatorname{cor}_{k_{3}}\left(G_{0}, G_{1}\right)\right] \approx(p \gamma n)^{6}
$$

...counting triangles?

$$
\mathbb{E}\left[\operatorname{cor}_{K_{3}}\left(G_{0}, G_{1}\right)\right] \approx(p \gamma n)^{6}+\left(\gamma^{2} p n\right)^{3}
$$

triangle counts in G_{0}, G_{1} are correlated

...counting triangles?

structured

$$
\begin{array}{ll}
& \mathbb{E}\left[\operatorname{cor}_{K_{3}}\left(G_{0}, G_{1}\right)\right] \approx(p \gamma n)^{6}+\left(\gamma^{2} p n\right)^{3} \\
\text { null } \\
& \mathbb{E}\left[\operatorname{cor}_{K_{3}}\left(G_{0}, G_{1}\right)\right] \approx(p \gamma n)^{6}
\end{array}
$$

Variance?

Optimistically, in null case,

$$
\mathbb{V}\left[\operatorname{cor}_{K_{3}}\left(G_{0}, G_{1}\right)\right]^{1 / 2} \approx(p \gamma n)^{3}
$$

"independent trials"

Suppose we had T "independent trials": $\quad \operatorname{cor}_{T}\left(G_{0}, G_{1}\right)=\frac{1}{T} \sum_{i=1}^{T} \operatorname{cor}_{K_{3}}^{(i)}\left(G_{0}, G_{1}\right)$

structured

$$
\mathbb{E}\left[\operatorname{cor}_{T}\left(G_{0}, G_{1}\right)\right] \approx(p \gamma n)^{6}+\left(\gamma^{2} p n\right)^{3}
$$

$$
\text { if } T>1 / \gamma^{6}
$$

null

$$
\mathbb{E}\left[\operatorname{cor}_{T}\left(G_{0}, G_{1}\right)\right] \approx(p \gamma n)^{6}
$$

$$
\operatorname{cor}_{T} \text { is a good test }
$$

$$
\mathbb{V}\left[\operatorname{cor}_{T}\left(G_{0}, G_{1}\right)\right]^{1 / 2} \approx \frac{1}{\sqrt{T}}(p \gamma n)^{3}
$$

near-independent subgraphs

"independent trials"

Suppose we had T "independent" subgraphs: $\operatorname{cor}_{T}\left(G_{0}, G_{1}\right)=\frac{1}{T} \sum_{i=1}^{T} \operatorname{cor}_{H_{i}}\left(G_{0}, G_{1}\right)$
what properties must H_{1}, \ldots, H_{T} have to be "independent"?

surprisingly delicate (concentration)

How many labeled copies of H in G ?

$$
\mathbb{E}\left[\#_{H}(G)\right]=\frac{5!}{|\operatorname{aut}(H)|} \cdot\binom{n}{5} \cdot p^{7} \approx n^{5} p^{7}=\Theta(1)
$$

surprisingly delicate (concentration)

$$
G(n, p)
$$

How many labeled copies of H in G ?

$$
\mathbb{E}\left[\#_{H}(G)\right]=\frac{5!}{|\operatorname{aut}(H)|} \cdot\binom{n}{5} \cdot p^{7} \approx n^{5} p^{7}=\Theta(1)
$$

How many labeled copies of K_{4} in G ?

$$
\mathbb{E}\left[\#_{K_{4}}(G)\right]=\frac{4!}{\left|\operatorname{aut}\left(K_{4}\right)\right|} \cdot\binom{n}{4} \cdot p^{6} \approx n^{4} p^{6}=\Theta\left(n^{-2 / 7}\right)
$$

variance of subgraph counts

Lemma

For a constant-sized subgraph H,

$$
\mathbb{V}\left[\#_{H}(G)\right]=\Theta(1) \cdot \frac{\mathbb{E}\left[\#_{H}(G)\right]^{2}}{\min _{J \subset H} \mathbb{E}\left[\#_{J}(G)\right]}
$$

strict balance

H is strictly balanced if all its strict subgraphs have edge density $<\frac{|E(H)|}{|V(H)|}$.
if $\mathbb{E}\left[\#_{H}(G)\right] \approx n^{|V(H)|} p^{|E(H)|}=\Theta(1)$,

$$
\text { then } \mathbb{E}\left[\#_{J}(G)\right]=\omega(1) \text { for any } J \subset H
$$

Lemma

For a constant-sized subgraph H,

$$
\mathbb{V}\left[\#_{H}(G)\right]=\Theta(1) \cdot \frac{\mathbb{E}\left[\#_{H}(G)\right]^{2}}{\min _{J \subset H} \mathbb{E}\left[\#_{J}(G)\right]}=o(1) \cdot \mathbb{E}\left[\#_{H}(G)\right]
$$

concentration AND independence

If H_{1}, \ldots, H_{T} are non-isomorphic strictly balanced graphs with $\mathbb{E}\left[\#_{H_{i}}(G)\right]=\Theta(1)$,
their counts concentrate

$$
\forall i \in[T], \quad \mathbb{V}\left[\#_{H_{i}}(G)\right]=o(1) \cdot \mathbb{E}\left[\#_{H_{i}}(G)\right]
$$

their counts are asymptotically independent
$\forall i \neq j \in[T]$

$$
\mathbb{E}\left[\#_{H_{i}}(G) \cdot \#_{H_{j}}(G)\right]=(1+o(1)) \cdot \mathbb{E}\left[\#_{H_{i}}(G)\right] \cdot \mathbb{E}\left[\#_{H_{j}}(G)\right]
$$

distinguishing algorithm

$$
\begin{aligned}
& \text { For } v=\frac{1}{\operatorname{poly}(\gamma)} \text {, design a "test set" } H_{1}, \ldots, H_{T} \\
& \qquad \text { of } T=v^{\Omega(e)} \text { strictly balanced graphs w/v vertices } \& e \text { edges. } n^{v}(p \gamma)^{e} \approx 1
\end{aligned}
$$

distinguishing algorithm

$$
\begin{aligned}
& \text { For } v=\frac{1}{\operatorname{poly}(\gamma)} \text {, design a "test set" } H_{1}, \ldots, H_{T} \\
& \qquad \text { of } T=v^{\Omega(e)} \text { strictly balanced graphs w/v vertices } \& e \text { edges. } n^{v}(p \gamma)^{e} \approx 1
\end{aligned}
$$

$$
\text { compute } \operatorname{cor}_{T}\left(G_{0}, G_{1}\right)=\frac{1}{T} \sum_{i=1}^{T} \operatorname{cor}_{H_{i}}\left(G_{0}, G_{1}\right)
$$

$\mathbb{E}\left[\operatorname{cor}_{T}\left(G_{0}, G_{1}\right)\right]= \begin{cases}n^{2 v}(\gamma p)^{2 e}+n^{v}\left(\gamma^{2} p\right)^{e} & \text { structured } \\ n^{2 v}(\gamma p)^{2 e} \text { null } & \quad \text { TODO: variance in structured case. }\end{cases}$

outline

- distinguishing/hypothesis testing
- recovery
- concluding

outline

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

designing a "test set"

For $v=\frac{1}{\operatorname{poly}(\gamma)}$, design a "test set" H_{1}, \ldots, H_{T}
of $T=v^{\Omega(e)}$ strictly balanced graphs w / v vertices $\& e$ edges.
$G(n, p)$ average degree: $\log n \longleftrightarrow n^{o(1)}$

designing a "test set"

For $v=\frac{1}{\operatorname{poly}(\gamma)}$, design a "test set" H_{1}, \ldots, H_{T}

$$
\text { of } T=v^{\Omega(e)} \text { strictly balanced graphs } \mathrm{w} / v \text { vertices } \& e \text { edges. }
$$

$$
\operatorname{set} n^{v}(p \gamma)^{e} \approx 1
$$

designing a "test set"

For $v=\frac{1}{\operatorname{poly}(\gamma)}$, design a "test set" H_{1}, \ldots, H_{T}

$$
\begin{array}{r}
\text { of } T=v^{\Omega(e)} \text { strictly balanced graphs } w / v \text { vertices \& e edges. } \\
\text { set } n^{v}(p \gamma)^{e} \approx 1
\end{array}
$$

claim: connected d-regular graphs are strictly balanced. proof: in any strict subgraph, average degree $<d$.

designing a "test set"

For $v=\frac{1}{\operatorname{poly}(\gamma)}$, design a "test set" H_{1}, \ldots, H_{T}

$$
\begin{array}{r}
\text { of } T=v^{\Omega(e)} \text { strictly balanced graphs } w / v \text { vertices \& e edges. } \\
\text { set } n^{v}(p \gamma)^{e} \approx 1
\end{array}
$$

claim: connected d-regular graphs are strictly balanced. proof: in any strict subgraph, average degree $<d$.
$G(n, p)$ average degree: $\log n$

"test set" for non-integer degrees

$$
\text { For } v=\frac{1}{\text { poly }(\gamma)^{\prime}}, \text { design a "test set" } H_{1}, \ldots, H_{T}
$$

$$
\begin{aligned}
& \text { of } T=v^{\Omega(e)} \text { strictly balanced graphs } w / v \text { vertices } \& e \text { edges. } \\
& \text { set } n^{v}(p \gamma)^{e} \approx 1
\end{aligned}
$$

what if we want $2 \cdot \frac{e}{v}=\lambda \cdot(d+1)+(1-\lambda) \cdot d$?

"test set" for non-integer degrees

For $v=\frac{1}{\operatorname{poly}(\gamma)}$, design a "test set" H_{1}, \ldots, H_{T}

$$
\begin{aligned}
& \text { of } T=v^{\Omega(e)} \text { strictly balanced graphs } w / v \text { vertices } \& e \text { edges. } \\
& \text { set } n^{v}(p \gamma)^{e} \approx 1
\end{aligned}
$$

what if we want $2 \cdot \frac{e}{v}=\lambda \cdot(d+1)+(1-\lambda) \cdot d$?

+ random matching on λv vertices
d-regular random graph on v vertices

strict balance? expansion.

$$
d<3 \text { ? }
$$

2-regular graphs don't expand.

"test set" for non-integer degrees < 3

$$
\begin{aligned}
& \text { For } v=\frac{1}{\operatorname{poly}(\gamma)} \text {, design a "test set" } H_{1}, \ldots, H_{T} \\
& \qquad \begin{array}{l}
\text { of } T=v^{\Omega(e)} \text { strictly balanced graphs w/v vertices \& e edges. } \\
\text { set } n^{v}(p \gamma)^{e} \approx 1
\end{array} .
\end{aligned}
$$

what if we want $2 \cdot \frac{e}{v}=\lambda \cdot 3+(1-\lambda) \cdot 2$?

3-regular random graph on λv vertices

strict balance? expansion.
$G(n, p)$ average degree: $\log n \stackrel{n^{o(1)}}{n^{1 / 153}} \underbrace{n^{1 / 2}}_{n^{1 / 3}} \underbrace{n^{2 / 3}} n$

designing a "test set"

For $v=\frac{1}{\operatorname{poly}(\gamma)}$, design a "test set" H_{1}, \ldots, H_{T}

$$
\text { of } T=v^{\Omega(e)} \text { strictly balanced graphs } \mathrm{w} / v \text { vertices } \& e \text { edges. }
$$

$$
\text { set } n^{v}(p \gamma)^{e} \approx 1
$$

+ more conditions (for recovery)
Conjecture: our construction achieves all $\frac{e}{v}$

$$
G(n, p) \text { average degree: }
$$

outline

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

outline

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

distinguishing \neq recovery

distinguishing: counting subgraphs
ambiguity in matching; how to conclude $\pi(u)=v$?
distinguishing: subgraphs on $\frac{1}{\operatorname{poly}(\gamma)}=O(1)$ vertices, each appearing $O(1)$ times only $O(1)$ vertices participate in subgraphs from our test set.

the "black swan" approach

identify rare subgraphs appearing in both graphs, and match vertices.

```
expected number of
```



```
that survive
subsampling
```

choose test set H_{1}, \ldots, H_{T} so that $\left.\left.\left(\gamma^{2} p\right)^{e} n^{v} \ggg \ggg\right)^{2 e} n^{2 v}\right)$ unrelated pairs of
if we see H_{i} in both graphs, it is most likely because of correlation.
choose large test set H_{1}, \ldots, H_{T} with $v=O(\log n)$ vertices
$\Omega(n)$ vertices participate in subgraphs from our test set.

the "black swan" approach

identify rare subgraphs appearing in both graphs, and match vertices.

Claim: there is at most one copy of each in G
with high probability

Claim: $\Omega(n)$ vertices in $G_{0} \cap G_{1}$, appear in a surviving subsampled with high probability

outline

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

outline

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

why subgraph counts/statistics?

emerging intuition/conjectures:
SoS \equiv avg low-degree polynomials
the sum-of-squares (SoS) semidefinite program is at most as powerful as "low-degree" statistics for average-case problems.
known to hold for: planted clique [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin'16]
CSP refutation [Grigoriev'01, Schoenebeck'08, Kothari-Mori-O'Donnell-Witmer'17] tensor PCA [Hopkins-Kothari-Potechin-Raghavendra-S-Steurer'17]
also known: SoS is at most as powerful as "low-degree" spectral algorithms for average-case problems [Hopkins-Kothari-Potechin-Raghavendra-S-Steurer'17]

does SoS know about the black swans?

does the natural SoS relaxation recover π ?

can ask similar questions about other low-degree functions,
e.g. non-backtracking random walk matrix.

more questions

- recovery in polynomial time?

SoS? or, many variations on our theme are possible.

- all information-theoretically possible $p \in\left[\frac{\log n}{n}, O(1)\right]$?
- practical heuristics?

Thank you!

