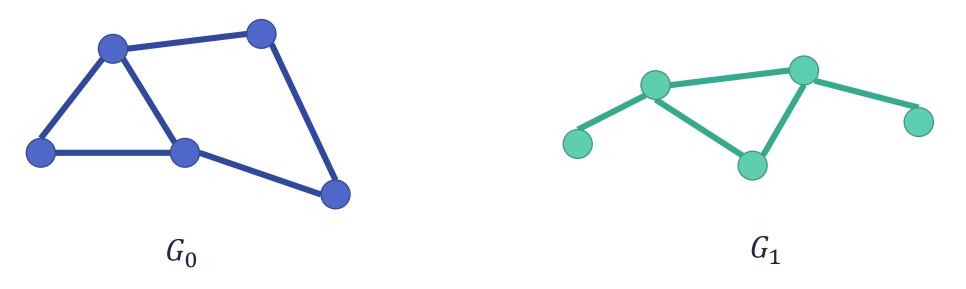
(Nearly) Efficient Algorithms for the Graph Matching Problem

Tselil Schramm (Harvard/MIT)

with Boaz Barak, Chi-Ning Chou, Zhixian Lei & Yueqi Sheng (Harvard)

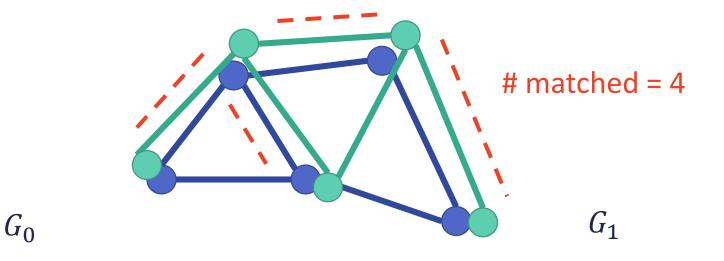
input: two graphs on *n* vertices

 $\max_{\pi} \langle A_{G_0}, \pi(A_{G_1}) \rangle$



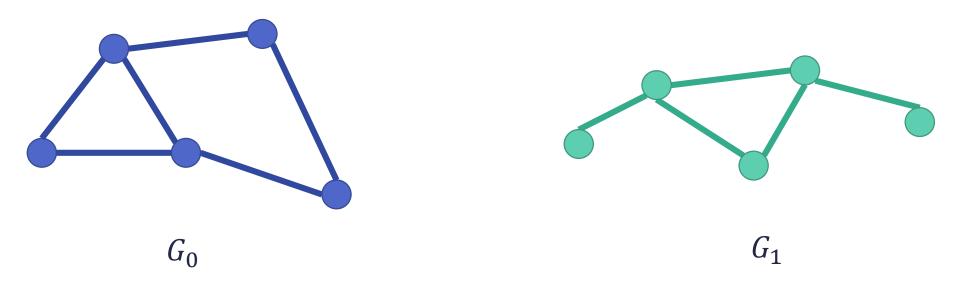
input: two graphs on n vertices

$$\max_{\pi} \langle A_{G_0}, \pi(A_{G_1}) \rangle$$



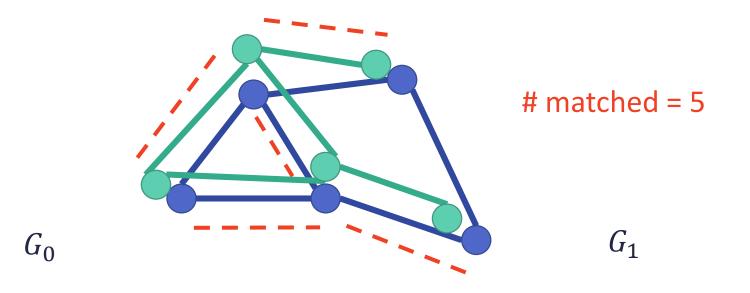
input: two graphs on n vertices

 $\max_{\pi} \langle A_{G_0}, \pi(A_{G_1}) \rangle$



input: two graphs on n vertices

 $\max_{\pi} \langle A_{G_0}, \pi(A_{G_1}) \rangle$



computationally hard (of course)

NP-hard: reduction from quadratic assignment problem (non-simple graphs). [Lawler'63]

also: reduction from sparse random 3-SAT to approximate version [O'Donnell-Wright-Wu-Zhou'14]

practitioners: undeterred

- computational biology [e.g. Singh-Xu-Berger'08]
- de-anonymization [e.g. Narayanan-Shmatikov'09]
- social networks [e.g. Korula-Lattanzi'14]
- image alignment [e.g. Cho-Lee'12]
- machine learning [e.g. Cour-Srinivasan-Shi'07]
- pattern recognition, e.g.

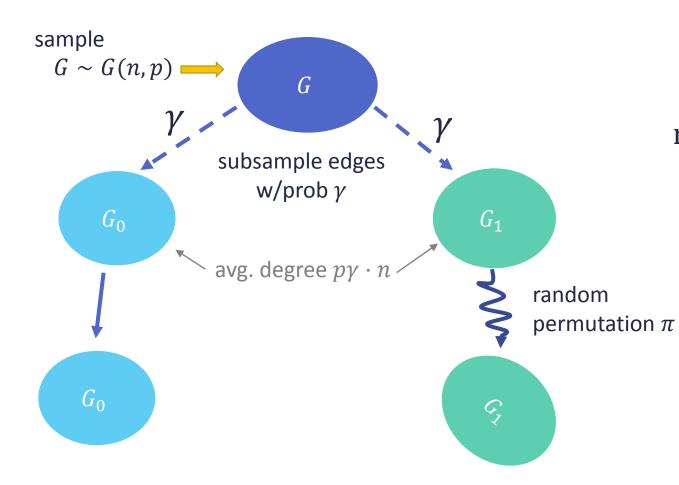
"thirty years of graph matching in pattern recognition"

[Conte-Foggia-Sansone-Vento'04]

"robust average-case graph isomorphism"

average case: correlated random graphs

structured model



$$\max_{\pi} \langle A_{G_0}, \pi(A_{G_1}) \rangle \approx p\gamma^2 \cdot \binom{n}{2}$$

[e.g. Pedarsani-Grossglauser'11, Lyzinski-Fishkind-Priebe'14, Korula-Lattanzi'14]

"robust average-case graph isomorphism"

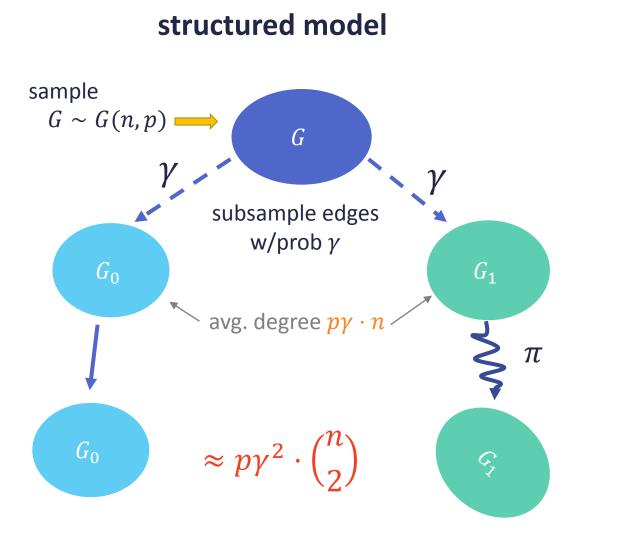
average case: correlated random graphs

structured model sample $G \sim G(n, p)$ G subsample edges w/prob γ G_1 avg. degree $p\gamma$ π $\approx p\gamma^2$ G

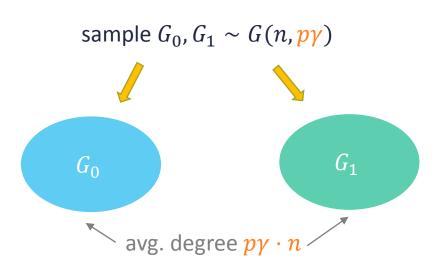
"null" model

"robust average-case graph isomorphism"

average case: correlated random graphs



"null" model



 $\max_{\pi} \langle A_{G_0}, \pi(A_{G_1}) \rangle \approx (p\gamma)^2 \cdot \binom{n}{2}$

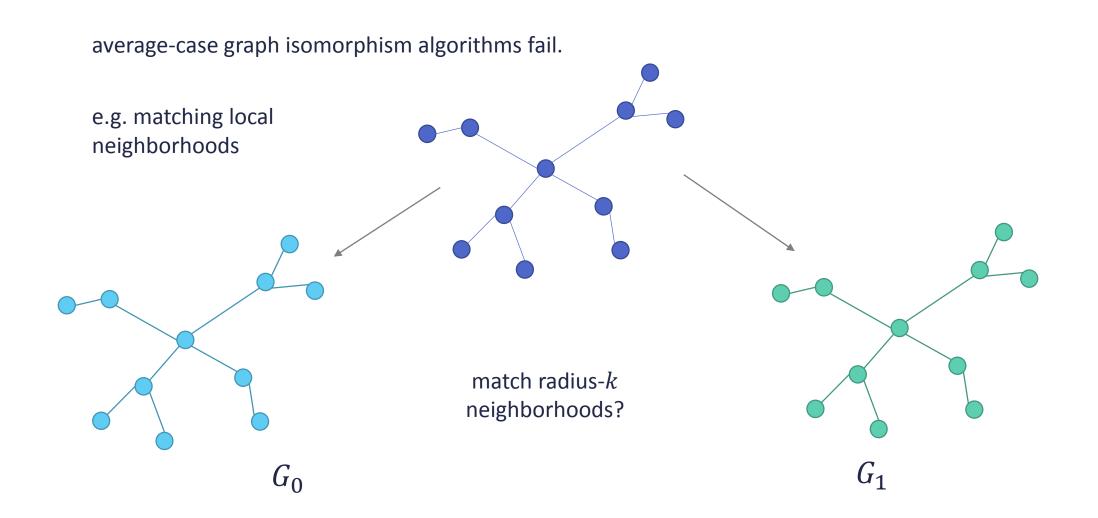
information theoretic limit

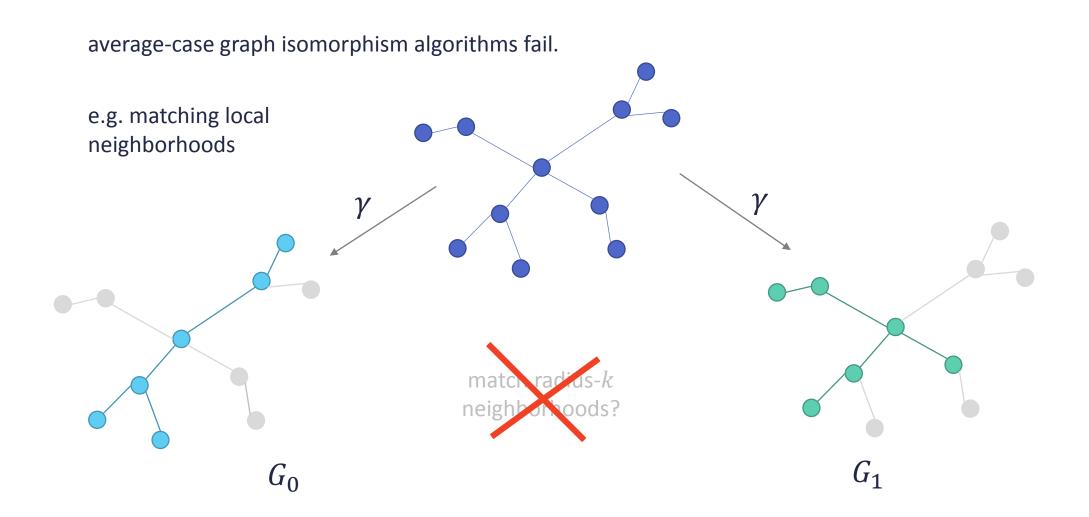
for which p, γ can we recover π ?

G(n,p) G_{0} G_{0} G_{1} G_{1} G_{1} G_{0} G_{1} G_{1} G_{2} G_{3} G_{4} G_{5} T

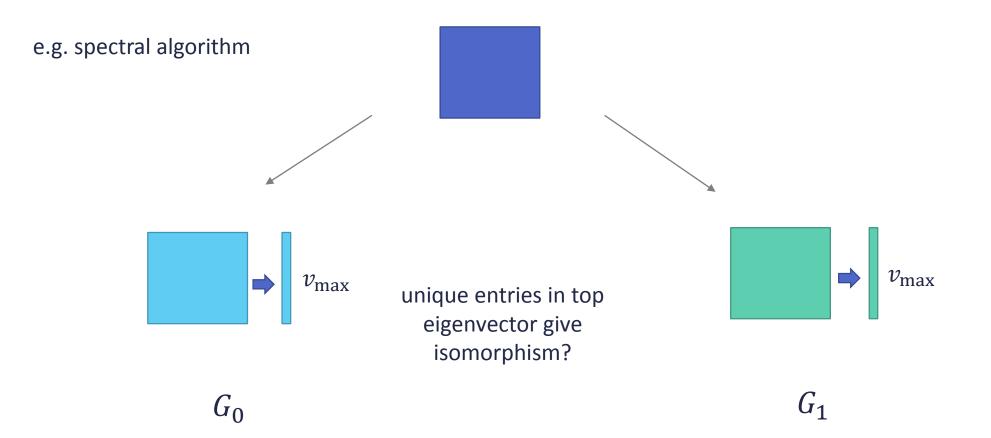
Theorem [Cullina-Kivayash'16&17]

Iff $p\gamma^2 > \frac{\log n}{n}$, with high probability π is the unique maximizing permutation.

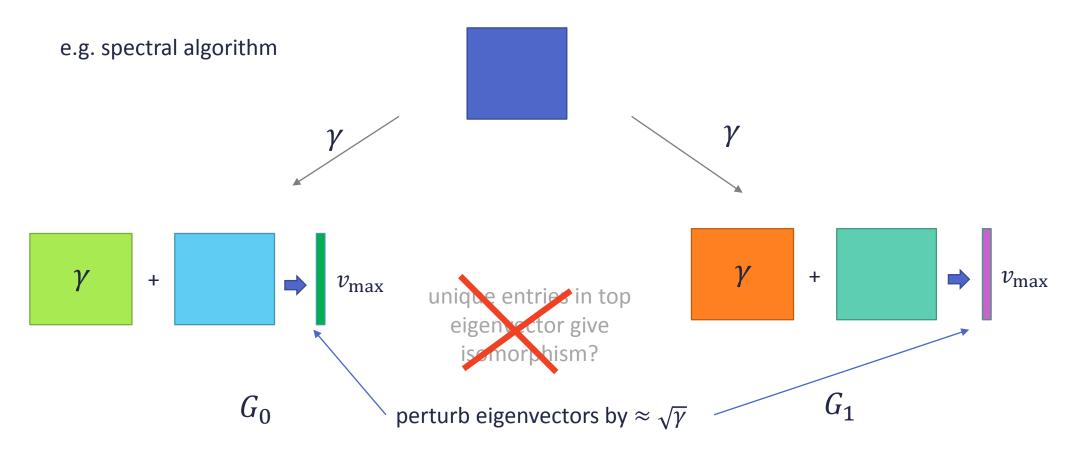




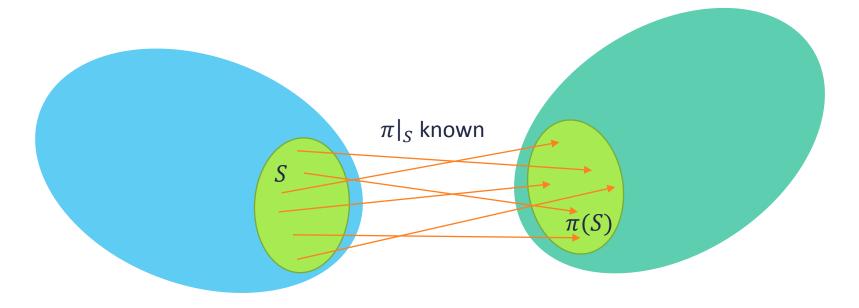
average-case graph isomorphism algorithms fail.



average-case graph isomorphism algorithms fail.

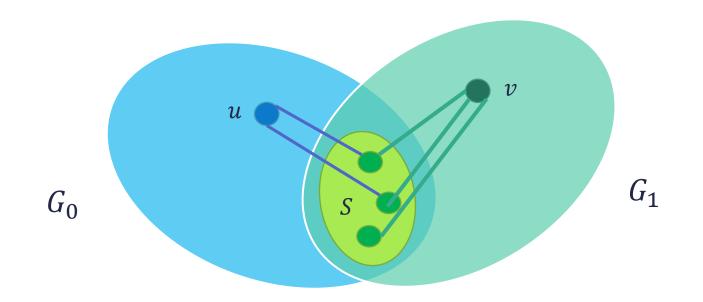


starting from a seed



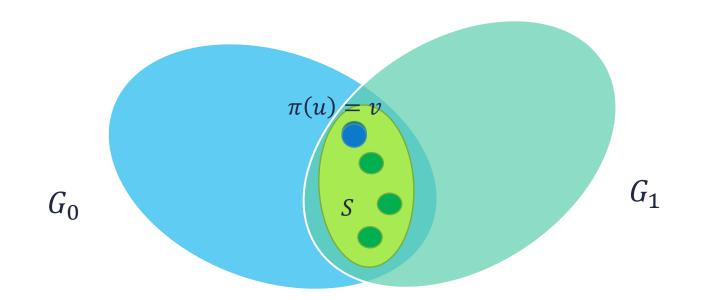
starting from a seed

match vertices with similar adjacency into ${\cal S}$



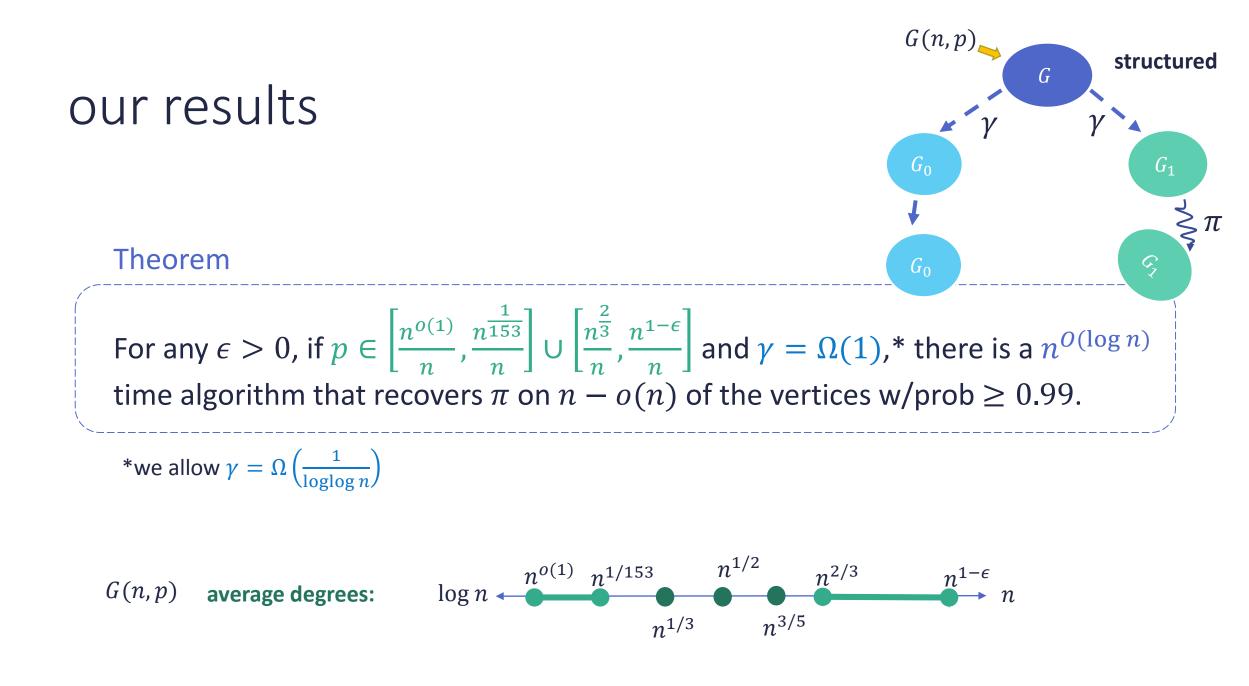
starting from a seed

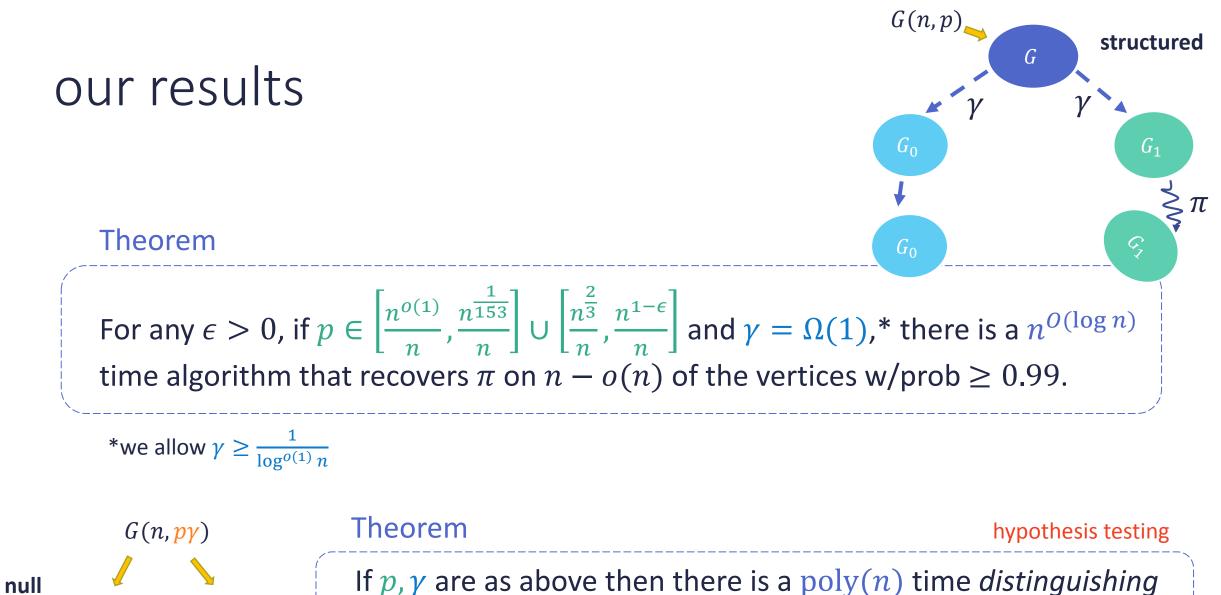
match vertices with similar adjacency into S



iff seed $\geq \Omega(n^{\epsilon})$, the seeded algorithm approximately recovers π . [Yartseva-Grossglauser'13]

need $2^{\tilde{O}(n^{\epsilon})}$ time to guess a seed.





 G_1

 G_0

algorithm for the **structured** vs **null** distributions.

our approach: small subgraphs

hypothesis testing: correlation of subgraph counts

recovery: match rare subgraphs

seedless algorithms!

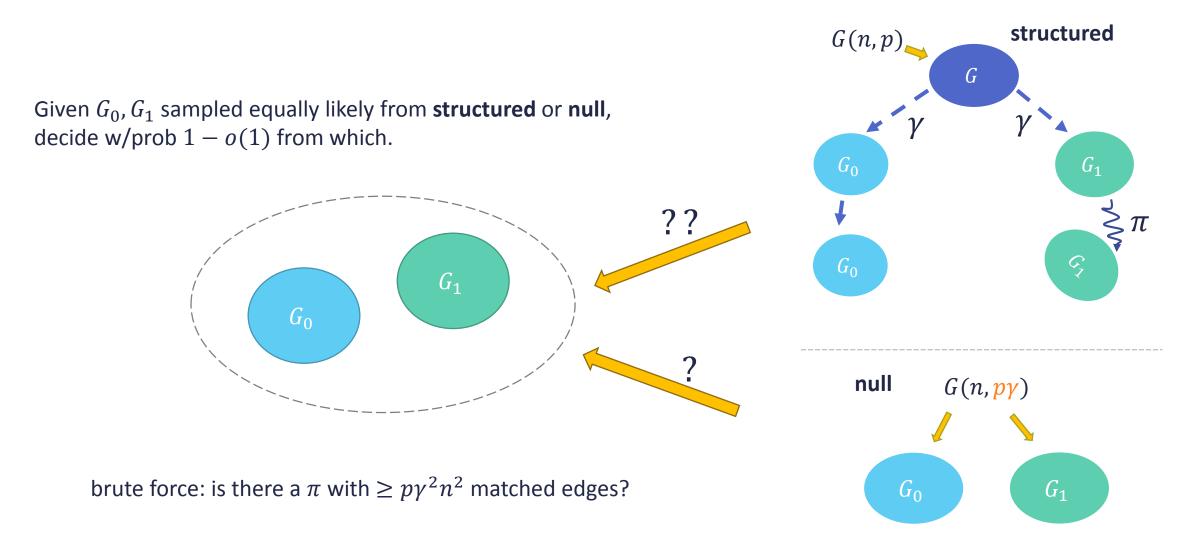
outline

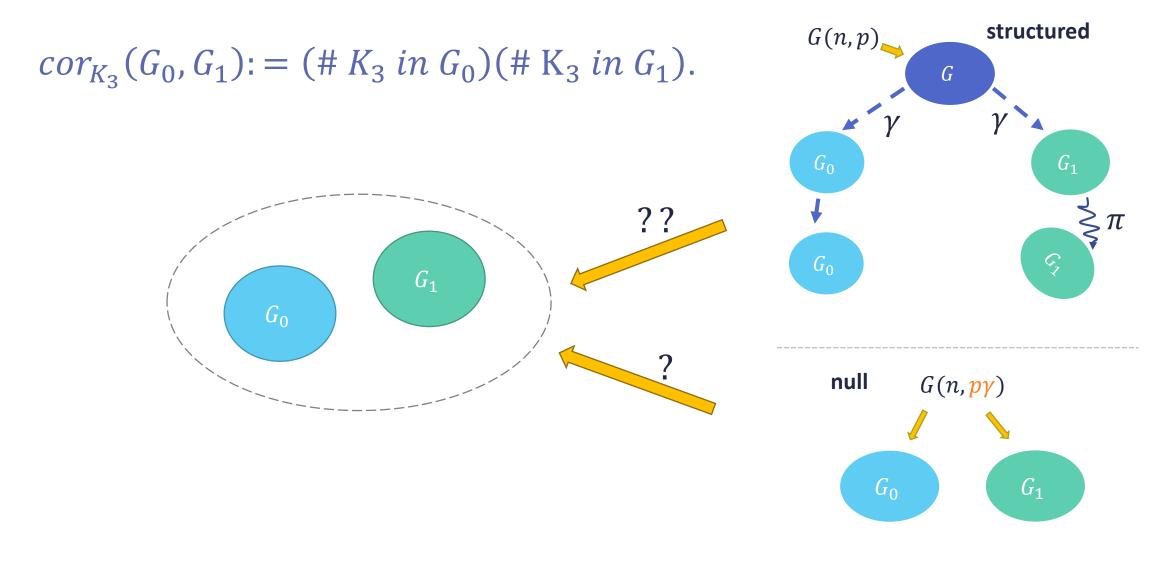
- distinguishing/hypothesis testing
- recovery
- concluding

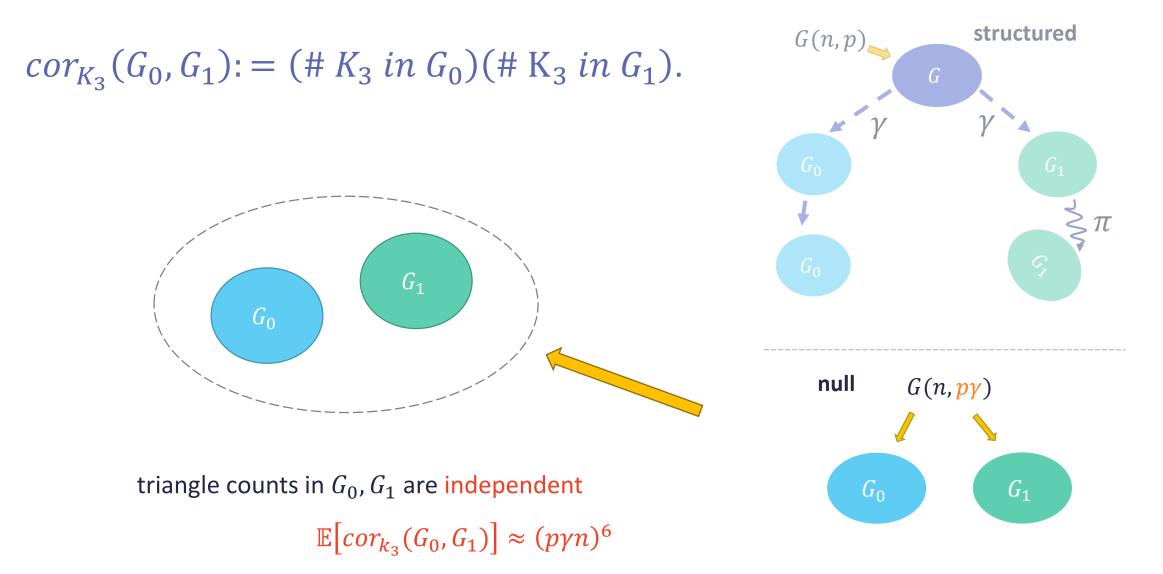
outline

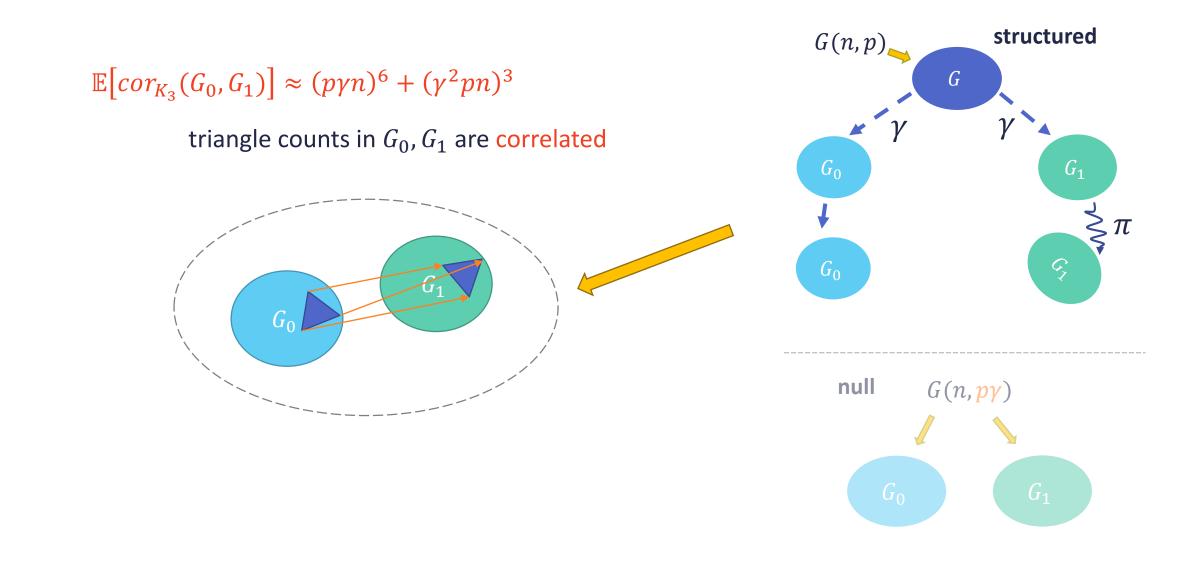
- distinguishing/hypothesis testing
- recovery
- concluding

distinguishing/hypothesis testing









structured

 $\mathbb{E}\left[cor_{K_3}(G_0, G_1)\right] \approx (p\gamma n)^6 + (\gamma^2 pn)^3$

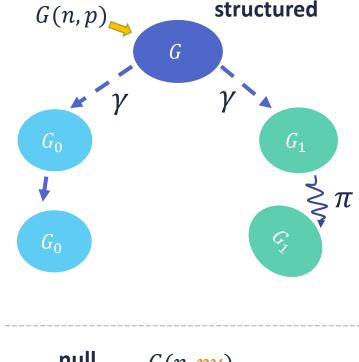
null

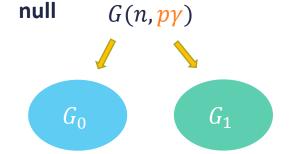
 $\mathbb{E}\big[cor_{K_3}(G_0,G_1)\big]\approx (p\gamma n)^6$

Variance?

Optimistically, in null case,

$$\mathbb{V}\big[cor_{K_3}(G_0,G_1)\big]^{1/2} \approx (p\gamma n)^3$$





Suppose we had *T* "independent trials":

structured

G(n,p)

(J

$$cor_T(G_0, G_1) = \frac{1}{T} \sum_{i=1}^T cor_{K_3}^{(i)}(G_0, G_1)$$

structured

$$\mathbb{E}[cor_{T}(G_{0},G_{1})] \approx (p\gamma n)^{6} + (\gamma^{2}pn)^{3}$$

$$\mathbb{E}[cor_{T}(G_{0},G_{1})] \approx (p\gamma n)^{6}$$
if $T > 1/\gamma^{6}$,
 cor_{T} is a good test

$$\mathbb{V}[cor_{T}(G_{0},G_{1})]^{1/2} \approx \frac{1}{\sqrt{T}}(p\gamma n)^{3}$$

near-independent subgraphs <u>"independent trials"</u>

Suppose we had *T* "independent" *subgraphs*:

$$cor_T(G_0, G_1) = \frac{1}{T} \sum_{i=1}^T cor_{H_i}(G_0, G_1)$$

what properties must H_1, \ldots, H_T have to be "independent"?

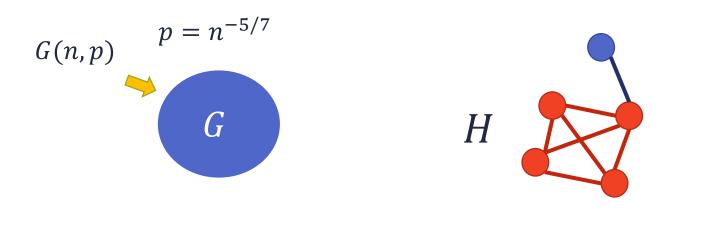
 $H_1, ..., H_T$

surprisingly delicate (concentration)

How many labeled copies of *H* in *G*?

$$\mathbb{E}[\#_H(G)] = \frac{5!}{|aut(H)|} \cdot \binom{n}{5} \cdot p^7 \approx n^5 p^7 = \Theta(1)$$

surprisingly delicate (concentration)



#_H(G) does not
 concentrate!

How many labeled copies of *H* in *G*?

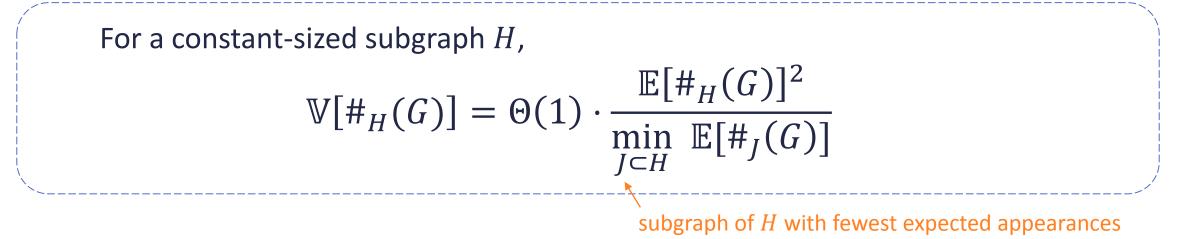
$$\mathbb{E}[\#_H(G)] = \frac{5!}{|aut(H)|} \cdot \binom{n}{5} \cdot p^7 \approx n^5 p^7 = \Theta(1)$$

How many labeled copies of K_4 in G?

$$\mathbb{E}[\#_{K_4}(G)] = \frac{4!}{|aut(K_4)|} \cdot \binom{n}{4} \cdot p^6 \approx n^4 p^6 = \Theta(n^{-2/7})$$

variance of subgraph counts

Lemma



strict balance

H is *strictly balanced* if all its strict subgraphs have edge density $< \frac{|E(H)|}{|V(H)|}$. $\Rightarrow \text{ if } \mathbb{E}[\#_H(G)] \approx n^{|V(H)|} p^{|E(H)|} = \Theta(1),$ then $\mathbb{E}[\#_J(G)] = \omega(1)$ for any $J \subset H$. Lemma For a constant-sized subgraph H, $\mathbb{V}[\#_H(G)] = \Theta(1) \cdot \frac{\mathbb{E}[\#_H(G)]^2}{\min_{J \subset H} \mathbb{E}[\#_J(G)]} = o(1) \cdot \mathbb{E}[\#_H(G)]$

concentration AND independence

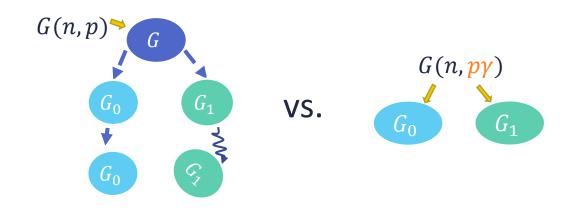
If H_1, \ldots, H_T are non-isomorphic strictly balanced graphs with $\mathbb{E}[\#_{H_i}(G)] = \Theta(1)$,

their counts concentrate

$$\forall i \in [T], \qquad \mathbb{V}\left[\#_{H_i}(G)\right] = o(1) \cdot \mathbb{E}\left[\#_{H_i}(G)\right]$$

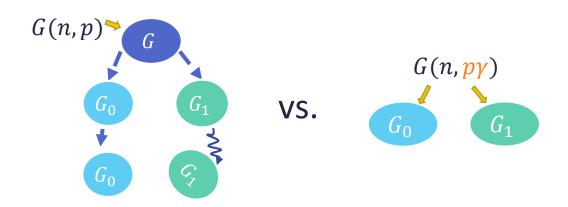
their counts are asymptotically independent

$$\forall i \neq j \in [T],$$
$$\mathbb{E}\left[\#_{H_i}(G) \cdot \#_{H_j}(G)\right] = (1 + o(1)) \cdot \mathbb{E}\left[\#_{H_i}(G)\right] \cdot \mathbb{E}\left[\#_{H_j}(G)\right]$$



For $v = \frac{1}{\text{poly}(\gamma)}$, design a "test set" H_1, \dots, H_T $\operatorname{set} n^v (p\gamma)^e \approx 1$ of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.

distinguishing algorithm



For $v = \frac{1}{\text{poly}(\gamma)}$, design a "test set" H_1, \dots, H_T $\operatorname{set} n^v (p\gamma)^e \approx 1$ of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.

distinguishing algorithm

compute
$$cor_T(G_0, G_1) = \frac{1}{T} \sum_{i=1}^T cor_{H_i}(G_0, G_1)$$
 $\geq \theta$ structured $< \theta$ null

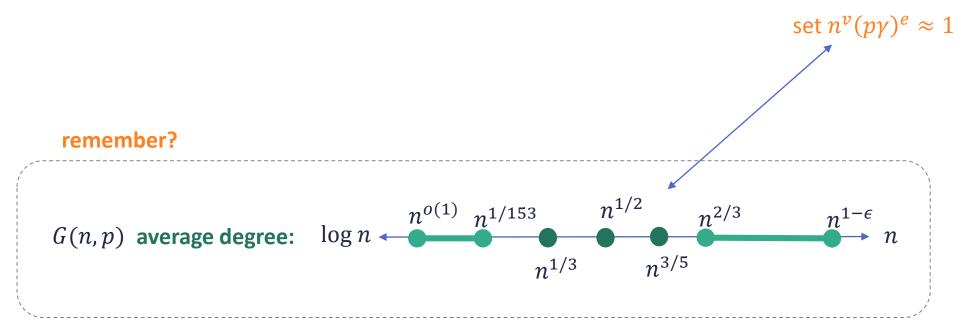
$$\mathbb{E}[cor_{T}(G_{0},G_{1})] = \begin{cases} n^{2\nu}(\gamma p)^{2e} + n^{\nu}(\gamma^{2}p)^{e} & \text{structured case} \\ n^{2\nu}(\gamma p)^{2e} & \text{null} \end{cases} \quad \mathbb{V}[cor_{T}(G_{0},G_{1})] = \frac{1}{\sqrt{T}}n^{\nu}(\gamma p)^{e} < n^{\nu}(\gamma^{2}p)^{e} & \text{null} \end{cases}$$

- distinguishing/hypothesis testing
- recovery
- concluding

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

For $v = \frac{1}{\text{poly}(\gamma)}$, design a "test set" H_1, \dots, H_T

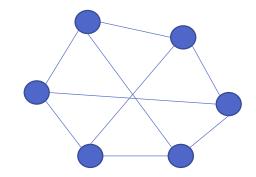
of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.

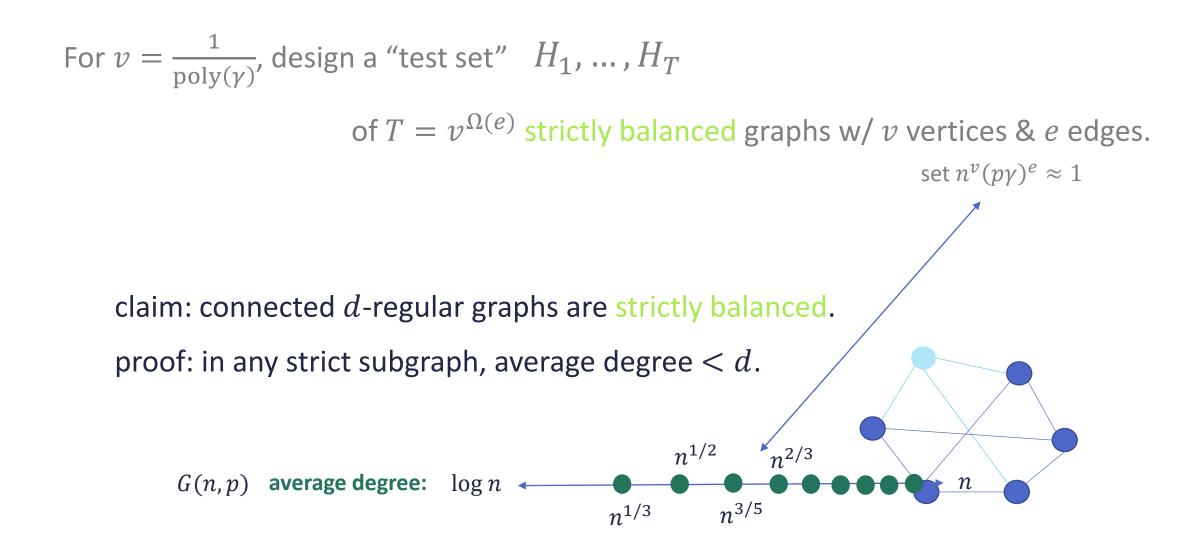


For $v = \frac{1}{\text{poly}(\gamma)}$, design a "test set" H_1, \dots, H_T of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges. set $n^v(p\gamma)^e \approx 1$

For
$$v = \frac{1}{\text{poly}(\gamma)}$$
, design a "test set" H_1, \dots, H_T
of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.
set $n^v(p\gamma)^e \approx 1$

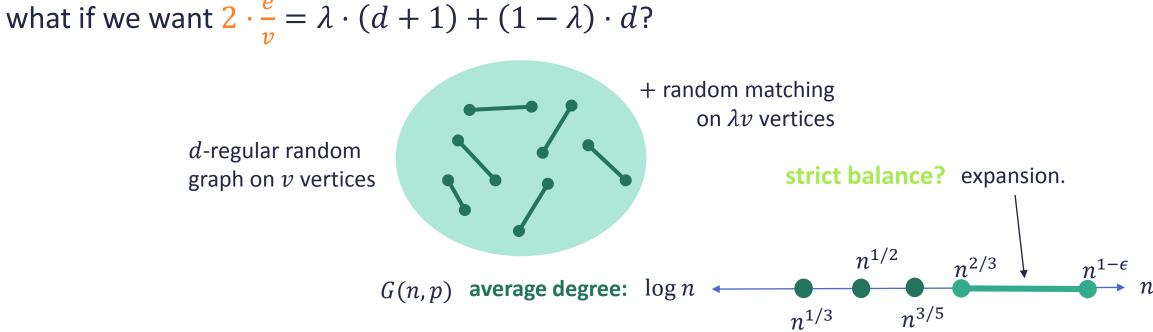
claim: connected d-regular graphs are strictly balanced. proof: in any strict subgraph, average degree < d.





"test set" for non-integer degrees

For
$$v = \frac{1}{\text{poly}(\gamma)}$$
, design a "test set" H_1, \dots, H_T
of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.
set $n^v(p\gamma)^e \approx 1$



"test set" for non-integer degrees

For
$$v = \frac{1}{\text{poly}(\gamma)}$$
, design a "test set" H_1, \dots, H_T
of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.
set $n^v(p\gamma)^e \approx 1$

what if we want
$$2 \cdot \frac{e}{v} = \lambda \cdot (d+1) + (1-\lambda) \cdot d$$
?

d-regular random graph on *v* vertices

+ random matching on λv vertices

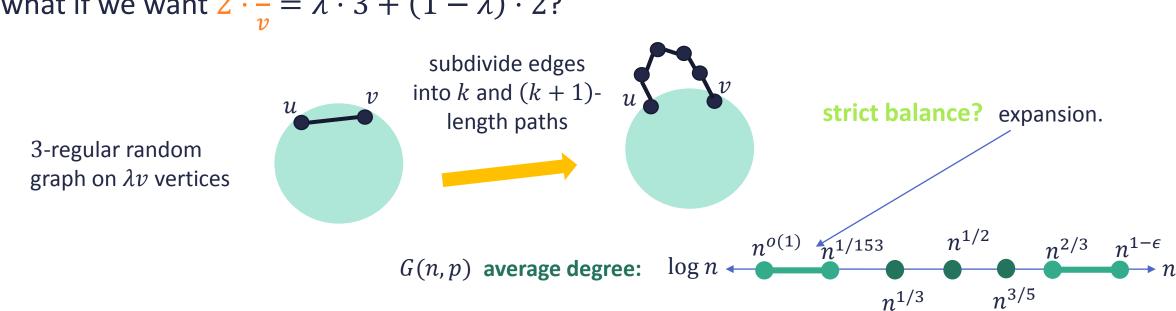
strict balance? expansion.

d < 3?

2-regular graphs don't expand.

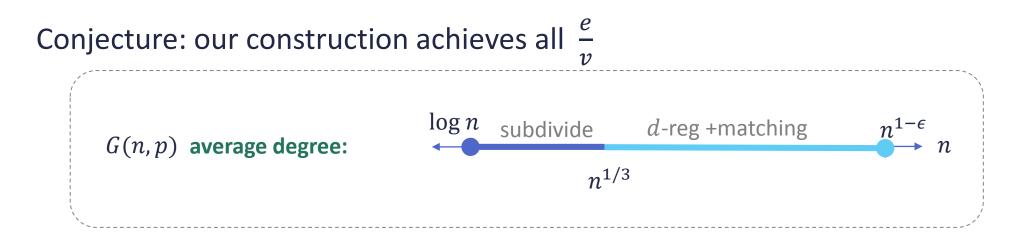
"test set" for non-integer degrees < 3

For
$$v = \frac{1}{\text{poly}(\gamma)}$$
, design a "test set" H_1, \dots, H_T
of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges.
set $n^v(p\gamma)^e \approx 1$
what if we want $2 \cdot \frac{e}{v} = \lambda \cdot 3 + (1 - \lambda) \cdot 2?$
subdivide edges



For
$$v = \frac{1}{poly(\gamma)}$$
, design a "test set" H_1, \dots, H_T
of $T = v^{\Omega(e)}$ strictly balanced graphs w/ v vertices & e edges
set $n^v(p\gamma)^e \approx 1$

+ more conditions (for recovery)



- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

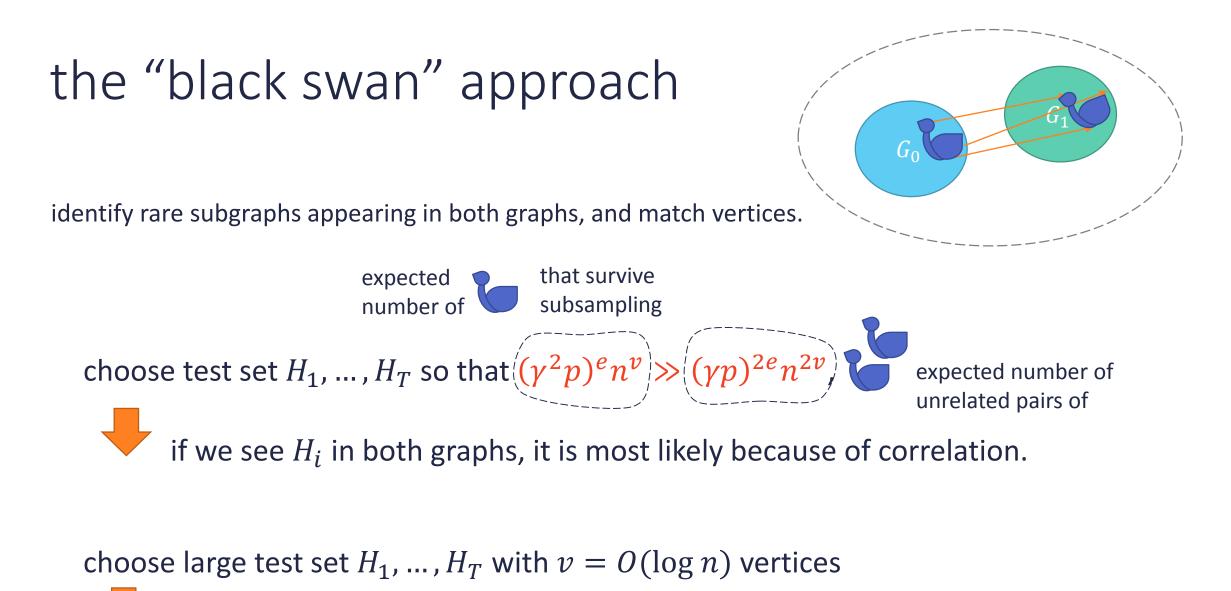
- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

```
distinguishing ≠ recovery
```

distinguishing: counting subgraphs

ambiguity in matching; how to conclude $\pi(u) = v$?

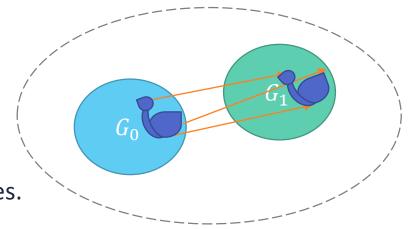
distinguishing: subgraphs on $\frac{1}{\text{poly}(\gamma)} = O(1)$ vertices, each appearing O(1) times only O(1) vertices participate in subgraphs from our test set.

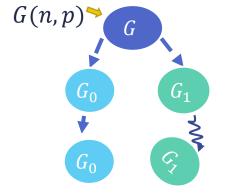


 $\Omega(n)$ vertices participate in subgraphs from our test set.

the "black swan" approach

identify rare subgraphs appearing in both graphs, and match vertices.





Claim: there is at most one copy of each \bigcirc in G with high probability

Claim: $\Omega(n)$ vertices in $G_0 \cap G_1$, appear in a surviving subsampled with high probability

proofs: second moment method

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

- distinguishing/hypothesis testing
- test graphs
- recovery
- concluding

why subgraph counts/statistics?

emerging intuition/conjectures:

SoS \equiv_{avg} low-degree polynomials

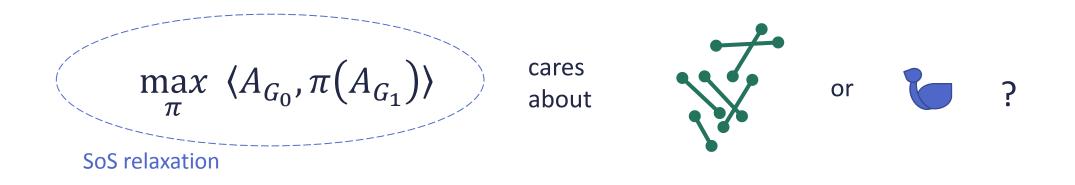
the sum-of-squares (SoS) semidefinite program is at most as powerful as "low-degree" statistics for average-case problems.

known to hold for: planted clique [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin'16] CSP refutation [Grigoriev'01, Schoenebeck'08, Kothari-Mori-O'Donnell-Witmer'17] tensor PCA [Hopkins-Kothari-Potechin-Raghavendra-**S**-Steurer'17]

also known: SoS is at most as powerful as "low-degree" spectral algorithms for average-case problems [Hopkins-Kothari-Potechin-Raghavendra-**S**-Steurer'17]

does SoS know about the black swans?

does the natural SoS relaxation recover π ?



can ask similar questions about other low-degree functions, e.g. non-backtracking random walk matrix.

more questions

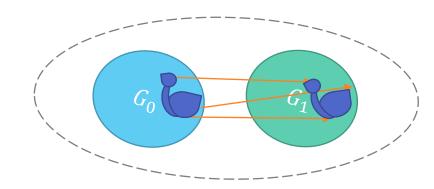
recovery in polynomial time?

SoS? or, many variations on our theme are possible.

• all information-theoretically possible $p \in \left[\frac{\log n}{n}, O(1)\right]$?

 $\log n$

 $n^{1/3}$



Thank you!