(Nearly) Efficient Algorithms
for the

Graph Matching Problem

Tselil Schramm
(Harvard/MIT)

with Boaz Barak, Chi-Ning Chou, Zhixian Lei & Yueqi Sheng (Harvard)

graph matChing prOblem (approximate graph isomorphism)

input: two graphs on n vertices

goal: find permutation of vertices that maximizes # shared edges

max <AG0»7T(A61)>

graph matChing prOblem (approximate graph isomorphism)

input: two graphs on n vertices

goal: find permutation of vertices that maximizes # shared edges

max <AGO»7T(A61)>

matched =4

graph matChing prOblem (approximate graph isomorphism)

input: two graphs on n vertices

goal: find permutation of vertices that maximizes # shared edges

max <AG0»7T(A61)>

graph matChing prOblem (approximate graph isomorphism)

input: two graphs on n vertices

goal: find permutation of vertices that maximizes # shared edges

matched =5

computationally hard

NP-hard: reduction from quadratic assignment problem (non-simple graphs).

also: reduction from sparse random 3-SAT to approximate version

practitioners: undeterred

computational biology [c.s. singh-xu-Berger0g]

de-anonymization [e.g. Narayanan-Shmatikov’09]

social networks [e.g. Korula-Lattanzi’14]

image alignment [c.g. Cho-Lee’12]

machine Iearning [e.g. Cour-Srinivasan-Shi’07]

pattern recognition, e.g.
“thirty years of graph matching in pattern recognition”
[Conte-Foggia-Sansone-Vento’04]

“robust average-case graph isomorphism”

average case: correlated random graphs

structured model

sample
G~Gnp) =

Yy .~
’

2”7 subsample edges
w/prob y

N\

N max (g, m(46,)) ~ v - (3)

- 2
random
permutation

™

] avg. degree py - n e

[e.g. Pedarsani-Grossglauser’11,
Lyzinski-Fishkind-Priebe’14,
Korula-Lattanzi’14]

“robust average-case graph isomorphism”

average case: correlated random graphs

structured model “null” model

sample
G~Gnp) =

7 \

subsample edges

Y -
7
6 o Q
™~

] avg. degree py - n/

%n

“robust average-case graph isomorphism”

average case: correlated random graphs

structured model

sample
G~Gnp) =

7 \

subsample edges

Y -
-,
7
° o °
™~

I avg. degree py - n/

%n

“null” model

sample Gy, G, ~ G(n,py)

/ \

™~

avg. degree py - n e

max (Ag, m(Ag,)) = (py)? - (Z)

,TTTTTTTTOSN

information theoretic limit

for which p, y can we recover t?

Theorem [Cullina-Kivayash’16&17]

__

algorithms for robust average case?

average-case graph isomorphism algorithms fail.

e.g. matching local
neighborhoods

match radius-k
neighborhoods?

algorithms for robust average case?

average-case graph isomorphism algorithms fail.

e.g. matching local
neighborhoods

% 14

N
e

algorithms for robust average case?

average-case graph isomorphism algorithms fail.

e.g. spectral algorithm -
eigenvector give

isomorphism?

GO Gl

v . .
max unique entries in top

algorithms for robust average case?

average-case graph isomorphism algorithms fail.

e.g. spectral algorithm -
p

vmax

eigen or give

\ ism? /
Go 7 6,

perturb eigenvectors by ~

N
+ v +
i or

actual algorithms for robust average case?

starting from a seed

| s known

starting from a seed

match vertices with similar adjacency into S

starting from a seed

match vertices with similar adjacency into S

iff seed > Q(n®), the seeded algorithm approximately recovers . [Yartseva-Grossglauser’13]

need 22" time to guess a seed.

G(n,p)

- structured
our results e

Theorem

‘ |
| o(1) —€ |
.~ Foranye > 0,ifp € [n n153] [n3 n] andy = Q(1),* thereisa nOlogn) i
~ time algorithm that recovers T on n — o(n) of the vertices w/prob = 0.99. }

N — e~

1
*k —
we allow ¥y = () ()
14 loglogn

no@® ,1/153 nl/2 n2/3

G(n,p) average degrees: logn<—.—. o O O .——.—' n

nl/3 n3/5

G(n,p)

%G structured

our results

Theorem
o ‘|
| o(1) —€ |
.~ Foranye > 0,ifp € [n n153] [n3 "] and ¥y = Q(1),* there is a n9{og™ |
, time algorithm that recovers m onn — o(n) of the vertices w/prob = 0.99. i

N — e~

*we allow y = Toge@ n

If », ¥ are as above then there is a poly(n) time distinguishing
algorithm for the structured vs null distributions.

~ —_———— -

our approach: small subgraphs

hypothesis testing: correlation of subgraph counts

recovery: match rare subgraphs

seedless algorithms!

outline

- distinguishing/hypothesis testing
* recovery
» concluding

outline

- distinguishing/hypothesis testing
* recovery
* concluding

distinguishing/hypothesis testing

Given Gy, G; sampled equally likely from structured or null,
decide w/prob 1 — 0o(1) from which.

brute force: is there a ™ with > py?n? matched edges?

..counting triangles?

COT‘K3 (Go, Gl): — (# K3 in Go)(# K3 in Gl)

.counting triangles?

COTK3 (Go, Gl): — (# K3 in Go)(# K3 in Gl)

triangle counts in Gy, G are independent

E|cory, (G, G1)| = (pyn)©

..counting triangles?

G(n, p) structured

E[COTKg (Go, G1)] ~ (pyn)® + (y*pn)?

triangle counts in G, G; are correlated °
Q%)

..counting triangles?

structured
[E[COTKg (Go, Gl)] ~ (pyn)® + (y*pn)*

null

E|cor, (Go, G1)| = (pyn)®

Variance?

Optimistically, in null case,

1/2
V[COTK3 (Go, G1)] ~ (pyn)’

“independent trials”

Suppose we had T “independent trials”:

G(n,p)*~
PO
¢’ @
o O

structured

/

-

T
1 .
corp(Go, Gy) = TE COT;E;)(GO; G1)

=1

~

/

Elcorr(Go, G1)] = (pyn)6 + (yzpn)g

G(n,py) null

/ N\
° e W[COTT(GO»G1)]1/2

(pyn)® ifT > 1/y°,

cory is a good test

near-independent subgraphs

i: | | l l . | 77

T
1
Suppose we had T “independent” subgraphs: cory(Ggy, G1) = TZ cory, (G, G1)

=1
Hy, ..., H;

what properties must Hq, ..., Hr have to be “independent”?

surprisingly delicate (concentration)

—5/7

Gnpy T
)
H

How many labeled copies of H in G?

5!
Elity (O] = i (5) 77~ n5p” = 0(1)

surprisingly delicate (concentration)

—5/7

Gp) "
)
H
#1(G) does not

concentrate!

How many labeled copies of H in G?

E[#,(6)] = —— ("

|aut('H)| : (5) p’ ~n5p7 = 0(1)

How many labeled copies of K, in G?

El#te, @] = ("

: : . no _
) (4) P° = ntp® = 02/

variance of subgraph counts

—— —

For a constant-sized subgraph H,

Vi#y(6)] = 06(1) -

subgraph of H with fewest expected appearances

strict balance

|E(H)]
V(H)|

H is if all its strict subgraphs have edge density <

L if E[#,(G)] = nlVWIplEEI = g(1),
then IE[#](G)] = w(1l) foranyJ c H. =

-_] M

For a constant-sized subgraph H,

E[#,(G)]?
V[#,(6)] = 6(1) - mii [’EL’[(#)(]G)] = 0(1) - E[#4(6)]
JCcH J

I R R R ———————————————————-

concentration AND independence

If H{, ..., Hy are non-isomorphic strictly balanced graphs with [E[#Hl.(G)] = 0(1),

their counts concentrate

vie[T], V[#,.(6)]=0(1)- E[#, ()]

their counts are asymptotically independent

Vi #j €|T],

E[#,,(6) #4,(®] = (1+0(1) E[#, (©] - E[#4,(6)]

G(n,p)%‘e
L <hi | +h a2)
distinguishing algorithm @ 2 . @b
o9

Forv = design a “test set” Hy, ..., Hp

l V4
poly(y) et n*(py)° ~ 1

of T = v e graphs w/ v vertices & e edges.

G(n,p)‘*;e\
distinguishing algorithm o 0

X |

G(n,py)

s @ @

Forv = design a “test set” Hy, ..., Hp

1 ’
poly(y) setn’(py) = 1

of T = v (e graphs w/ v vertices & e edges.

e T ™ >0 structured
1 /

compute corr(Gy, G1) = Tz cory, (Go, G1)

N - <0 null

n?’(yp)?¢+n®(y?p)¢ structured

TODO: variance in structured case.
E[COTT(GO; G1)] =

1
n?’(yp)*¢ null Vlcory(Gy, G1)] = ﬁn"(yp)e <n¥(y*p)¢ null

outline

- distinguishing/hypothesis testing
* recovery
» concluding

outline

- distinguishing/hypothesis testing

* recovery
» concluding

designing a “test set”

Forv = , design a “testset” Hy,...,Hrp

poly(y)

of T = v e graphs w/ v vertices & ¢ edges.
setn’(py)¢ = 1

remember?

no 1/153 nl/2

n2/3

G(n,p) average degree: logn<—‘—. o0 © .—.—> n

nl/3 n3/5

designing a “test set”

Forv = design a “test set” Hyq, ..., Hp

poly(y)’

of T = v e graphs w/ v vertices & ¢ edges.
setn’(py)¢ = 1

designing a “test set”

Forv = design a “test set” Hq, ..., Hp

poly(y)’

of T = v e) graphs w/ v vertices & e edges.
setn’(py)¢ = 1

claim: connected d-regular graphs are

proof: in any strict subgraph, average degree < d.

designing a “test set”

Forv = design a “test set” Hq, ..., Hp

poly(y)’

of T = v e) graphs w/ v vertices & e edges.
setn’(py)¢ = 1

claim: connected d-regular graphs are

proof: in any strict subgraph, average degree < d.

nl/z n2/3

G(n,p) average degree: logn <« o0 O
n1/3 n3/5

“test set” for non-integer degrees

Forv = design a “test set” Hq, ..., Hp

poly(y)’

of T = v e) graphs w/ v vertices & e edges.
setn’(py)¢ = 1

whatifwewantZ-%zA-(d+1)+(1—/’l)-d?

+ random matching
— / on Av vertices

d-regular random \ \
graph on v vertices X / expansion.
nt/? n2/3 e
G(n,p) average degree: logn < o—0 0 o0—u@— n

nl/3 n3/5

“test set” for non-integer degrees

Forv = design a “test set” Hq, ..., Hp

poly(y)’

of T = v e) graphs w/ v vertices & e edges.
setn’(py)¢ = 1

whatifwewantZ-%zA-(d+1)+(1—/’l)-d?

+ random matching
— / on Av vertices

d-regular random \ \
graph on v vertices X / expansion.
d < 37?

2-regular graphs don’t expand.

“test set” for non-integer degrees < 3

Forv = , design a “test set” Hy, ..., Hp

poly(y)

of T = v e) graphs w/ v vertices & e edges.
setn’(py)¢ = 1

—/1 3+(1-24) 27

subdivide edges
v intokand (k+1)- y U
expansion.

‘o—=o length paths

what if we want 2 -

3-regular random
graph on Av vertices

no(«1/153 nl/2 n2/3 pl-e

G(n,p) average degree: logn<—.—. o0 ¢ O—.—>n

nl/3 n3/5

designing a “test set”

Forv = design a “test set” Hyq, ..., Hp

poly(y)’

of T = v e graphs w/ v vertices & ¢ edges.
setn’(py)¢ = 1

+ more conditions (for recovery)

. . . e
Conjecture: our construction achieves all -

o,
logn sybdivide d-reg +matching nl-€
G(n,p) average degree: — Pr—— — n
1/3

outline

- distinguishing/hypothesis testing
- test graphs

* recovery

» concluding

outline

- distinguishing/hypothesis testing
- test graphs

» concluding

distinguishing # recovery

distinguishing: counting subgraphs

" ambiguity in matching; how to conclude w(u) = v?

distinguishing: subgraphs on = 0(1) vertices, each appearing O(1) times

poly(y)

" only O(1) vertices participate in subgraphs from our test set.

—_— T~

the “black swan” approach

identify rare subgraphs appearing in both graphs, and match vertices. "~__ .
expected that survive
number of subsampling

==
‘\

choose test set Hy, ..., Hy so that| (y p)e '>>' (yp)ze 2v | b expected number of

———————————————————— unrelated pairs of

' if we see H; in both graphs, it is most likely because of correlation.

choose large test set Hy, ..., Hr with v = O (log n) vertices

" (0(n) vertices participate in subgraphs from our test set.

the “black swan” approach

identify rare subgraphs appearing in both graphs, and match vertices.

o @
Y Ve

@ @ Claim: there is at most one copy of each b in G

;Q a% with high probability

Claim: 0(n) vertices in Gy N G4, appear in a surviving subsampled b
with high probability

proofs: second moment method

outline

- distinguishing/hypothesis testing
- test graphs

* recovery

» concluding

outline

- distinguishing/hypothesis testing
- test graphs
* recovery

why subgraph counts/statistics?

emerging intuition/conjectures: SoS =,,,4 low-degree polynomials

the sum-of-squares (SoS) semidefinite program is at most as powerful as “low-degree” statistics
for average-case problems.

known to hold for: planted clique [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin’16]
CSP refutation [Grigoriev’01, Schoenebeck’08, Kothari-Mori-O’Donnell-Witmer’17]

tensor PCA [Hopkins-Kothari-Potechin-Raghavendra-S-Steurer’17]

also known: SoS is at most as powerful as “low-degree” spectral algorithms for average-case
problems [Hopkins-Kothari-Potechin-Raghavendra-S-Steurer’17]

does SoS know about the black swans?

does the natural SoS relaxation recover 7

— —_——
— —
-

o max (g, m(4g,)) 5o \y; o @ 7
________________________ \

SoS relaxation

can ask similar questions about other low-degree functions,
e.g. non-backtracking random walk matrix.

more questions

* recovery in polynomial time?
SoS? or, many variations on our theme are possible.

- all information-theoretically possible p € roin, 0(1)]?

logn n
. . . 4—%—»
* practical heuristics? 173

Thank you!

