
(Nearly) Efficient Algorithms
for the

Graph Matching Problem

Tselil Schramm
(Harvard/MIT)

with Boaz Barak, Chi-Ning Chou, Zhixian Lei & Yueqi Sheng (Harvard)

graph matching problem (approximate graph isomorphism)

𝐺0 𝐺1

goal: find permutation of vertices that maximizes # shared edges

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1

input: two graphs on 𝑛 vertices

graph matching problem (approximate graph isomorphism)

𝐺0 𝐺1

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1

matched = 4

goal: find permutation of vertices that maximizes # shared edges

input: two graphs on 𝑛 vertices

graph matching problem (approximate graph isomorphism)

𝐺0 𝐺1

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1

goal: find permutation of vertices that maximizes # shared edges

input: two graphs on 𝑛 vertices

graph matching problem (approximate graph isomorphism)

𝐺0 𝐺1

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1

matched = 5

goal: find permutation of vertices that maximizes # shared edges

input: two graphs on 𝑛 vertices

computationally hard (of course)

NP-hard: reduction from quadratic assignment problem (non-simple graphs).

[Lawler’63]

also: reduction from sparse random 3-SAT to approximate version
[O’Donnell-Wright-Wu-Zhou’14]

practitioners: undeterred

 computational biology [e.g. Singh-Xu-Berger‘08]

 de-anonymization [e.g. Narayanan-Shmatikov’09]

 social networks [e.g. Korula-Lattanzi’14]

 image alignment [e.g. Cho-Lee’12]

 machine learning [e.g. Cour-Srinivasan-Shi’07]

 pattern recognition, e.g.
“thirty years of graph matching in pattern recognition”

[Conte-Foggia-Sansone-Vento’04]

average case: correlated random graphs

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1 ≈ 𝑝𝛾2 ⋅
𝑛

2

sample
𝐺 ∼ 𝐺(𝑛, 𝑝)

subsample edges
w/prob 𝛾

𝐺

𝐺0 𝐺1

𝐺0

random
permutation 𝜋

𝛾𝛾

avg. degree 𝑝𝛾 ⋅ 𝑛

structured model

[e.g. Pedarsani-Grossglauser’11,
Lyzinski-Fishkind-Priebe’14,
Korula-Lattanzi’14]

“robust average-case graph isomorphism”

average case: correlated random graphs

avg. degree 𝑝𝛾 ⋅ 𝑛

≈ 𝑝𝛾2 ⋅
𝑛

2

“null” model

sample
𝐺 ∼ 𝐺(𝑛, 𝑝)

subsample edges
w/prob 𝛾

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

structured model

“robust average-case graph isomorphism”

average case: correlated random graphs

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1 ≈ 𝑝𝛾 2 ⋅
𝑛

2

avg. degree 𝑝𝛾 ⋅ 𝑛

≈ 𝑝𝛾2 ⋅
𝑛

2

“null” model

sample 𝐺0, 𝐺1 ∼ 𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

avg. degree 𝑝𝛾 ⋅ 𝑛

sample
𝐺 ∼ 𝐺(𝑛, 𝑝)

subsample edges
w/prob 𝛾

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

structured model

“robust average-case graph isomorphism”

information theoretic limit

Iff 𝑝𝛾2 >
log 𝑛

𝑛
, with high probability 𝜋 is the unique maximizing permutation.

Theorem

𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

for which 𝑝, 𝛾 can we recover 𝜋?

[Cullina-Kivayash’16&17]

algorithms for robust average case?

e.g. matching local
neighborhoods

average-case graph isomorphism algorithms fail.

match radius-𝑘
neighborhoods?

𝐺0 𝐺1

algorithms for robust average case?

𝛾𝛾

e.g. matching local
neighborhoods

average-case graph isomorphism algorithms fail.

match radius-𝑘
neighborhoods?

𝐺0 𝐺1

algorithms for robust average case?

average-case graph isomorphism algorithms fail.

e.g. spectral algorithm

unique entries in top
eigenvector give
isomorphism?

𝑣max
𝑣max

𝐺0 𝐺1

algorithms for robust average case?

average-case graph isomorphism algorithms fail.

e.g. spectral algorithm

unique entries in top
eigenvector give
isomorphism?

𝑣max
𝑣max

𝛾𝛾

+ +𝛾𝛾

perturb eigenvectors by ≈ 𝛾𝐺0 𝐺1

actual algorithms for robust average case?

starting from a seed

𝜋ȁ𝑆 known

𝑆

𝜋(𝑆)

𝐺0 𝐺1

starting from a seed

𝑆

𝑢
𝑣

match vertices with similar adjacency into 𝑆

𝐺0
𝐺1

starting from a seed

𝑆

𝜋 𝑢 = 𝑣

match vertices with similar adjacency into 𝑆

need 2 ෨𝑂 𝑛𝜖 time to guess a seed.

iff seed ≥ Ω(𝑛𝜖), the seeded algorithm approximately recovers 𝜋. [Yartseva-Grossglauser’13]

𝐺0
𝐺1

our results

For any 𝜖 > 0, if 𝑝 ∈
𝑛𝑜(1)

𝑛
,
𝑛

1
153

𝑛
∪

𝑛
2
3

𝑛
,
𝑛1−𝜖

𝑛
and 𝛾 = Ω(1),* there is a 𝑛𝑂(log 𝑛)

time algorithm that recovers 𝜋 on 𝑛 − 𝑜(𝑛) of the vertices w/prob ≥ 0.99.

Theorem

𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

𝑛𝑜(1) 𝑛1/153 𝑛2/3 𝑛1−𝜖
𝑛log 𝑛average degrees:

*we allow 𝛾 = Ω
1

loglog 𝑛

𝑛1/3

𝑛1/2

𝑛3/5

structured

𝐺(𝑛, 𝑝)

For any 𝜖 > 0, if 𝑝 ∈
𝑛𝑜(1)

𝑛
,
𝑛

1
153

𝑛
∪

𝑛
2
3

𝑛
,
𝑛1−𝜖

𝑛
and 𝛾 = Ω(1),* there is a 𝑛𝑂(log 𝑛)

time algorithm that recovers 𝜋 on 𝑛 − 𝑜(𝑛) of the vertices w/prob ≥ 0.99.

our results

Theorem

*we allow 𝛾 ≥
1

log𝑜(1) 𝑛

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

If 𝑝, 𝛾 are as above then there is a poly(𝑛) time distinguishing
algorithm for the structured vs null distributions.

Theorem hypothesis testing

structured

null

𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

our approach: small subgraphs

seedless algorithms!

hypothesis testing: correlation of subgraph counts

recovery: match rare subgraphs

outline

 distinguishing/hypothesis testing

 recovery

 concluding

outline

 distinguishing/hypothesis testing

 recovery

 concluding

distinguishing/hypothesis testing
𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

structured

null

Given 𝐺0, 𝐺1 sampled equally likely from structured or null,
decide w/prob 1 − 𝑜(1) from which.

𝐺1
𝐺0

? ?

?

brute force: is there a 𝜋 with ≥ 𝑝𝛾2𝑛2 matched edges?

…counting triangles?
𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

structured

null

𝐺1
𝐺0

? ?

?

𝑐𝑜𝑟𝐾3 𝐺0, 𝐺1 : = # 𝐾3 𝑖𝑛 𝐺0 # K3 𝑖𝑛 𝐺1 .

…counting triangles?
𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

structured

null

𝐺1
𝐺0

triangle counts in 𝐺0, 𝐺1 are independent

𝔼 𝑐𝑜𝑟𝑘3(𝐺0, 𝐺1) ≈ 𝑝𝛾𝑛 6

𝑐𝑜𝑟𝐾3 𝐺0, 𝐺1 : = # 𝐾3 𝑖𝑛 𝐺0 # K3 𝑖𝑛 𝐺1 .

…counting triangles?
𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

structured

𝐺1
𝐺0

triangle counts in 𝐺0, 𝐺1 are correlated

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

null

𝔼 𝑐𝑜𝑟𝐾3(𝐺0, 𝐺1) ≈ 𝑝𝛾𝑛 6 + 𝛾2𝑝𝑛 3

…counting triangles?
𝐺(𝑛, 𝑝)

𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

structured

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

null

𝔼 𝑐𝑜𝑟𝐾3(𝐺0, 𝐺1) ≈ 𝑝𝛾𝑛 6

𝔼 𝑐𝑜𝑟𝐾3(𝐺0, 𝐺1) ≈ 𝑝𝛾𝑛 6 + 𝛾2𝑝𝑛 3

Variance?

Optimistically, in null case,

𝕍 𝑐𝑜𝑟𝐾3 𝐺0, 𝐺1
1/2

≈ 𝑝𝛾𝑛 3

structured

null

“independent trials”

Suppose we had 𝑇 “independent trials”:

𝔼 𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 ≈ 𝑝𝛾𝑛 6

𝔼 𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 ≈ 𝑝𝛾𝑛 6 + 𝛾2𝑝𝑛 3

structured

null

𝕍 𝑐𝑜𝑟𝑇 𝐺0, 𝐺1
1/2 ≈

1

𝑇
𝑝𝛾𝑛 3

if 𝑇 > 1/𝛾6,
𝑐𝑜𝑟𝑇 is a good test

𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 =
1

𝑇

𝑖=1

𝑇

𝑐𝑜𝑟𝐾3
(𝑖)
(𝐺0, 𝐺1)

𝐺(𝑛, 𝑝)
𝐺

𝐺0 𝐺1

𝐺0

𝛾𝛾

𝜋

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1

“independent trials”
near-independent subgraphs

𝐻1, … , 𝐻𝑇

what properties must 𝐻1, … , 𝐻𝑇 have to be “independent”?

Suppose we had 𝑇 “independent” subgraphs: 𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 =
1

𝑇

𝑖=1

𝑇

𝑐𝑜𝑟𝐻𝑖
(𝐺0, 𝐺1)

𝔼 #𝐻 𝐺 =
5!

ȁ𝑎𝑢𝑡 𝐻 ȁ
⋅
𝑛

5
⋅ 𝑝7

surprisingly delicate (concentration)

𝑝 = 𝑛−5/7

How many labeled copies of 𝐻 in 𝐺?

𝐺(𝑛, 𝑝)

𝐺 𝐻

≈ 𝑛5𝑝7 = Θ(1)

surprisingly delicate (concentration)

𝑝 = 𝑛−5/7

How many labeled copies of 𝐻 in 𝐺?

𝐺(𝑛, 𝑝)

𝐺 𝐻

𝔼 #𝐻 𝐺 =
5!

ȁ𝑎𝑢𝑡 𝐻 ȁ
⋅
𝑛

5
⋅ 𝑝7

How many labeled copies of 𝐾4 in 𝐺?

𝔼 #𝐾4 𝐺 =
4!

ȁ𝑎𝑢𝑡 𝐾4 ȁ
⋅
𝑛

4
⋅ 𝑝6

≈ 𝑛5𝑝7 = Θ(1)

≈ 𝑛4𝑝6 = Θ(𝑛−2/7)

#𝐻(𝐺) does not
concentrate!

variance of subgraph counts

𝐻

𝐺(𝑛, 𝑝)

𝐺

For a constant-sized subgraph 𝐻,

Lemma

𝕍 #𝐻(𝐺) = Θ 1 ⋅
𝔼 #𝐻 𝐺 2

min
𝐽⊂𝐻

𝔼[#𝐽 𝐺]

subgraph of 𝐻 with fewest expected appearances

strict balance

For a constant-sized subgraph 𝐻,

Lemma

𝕍 #𝐻(𝐺) = Θ 1 ⋅
𝔼 #𝐻 𝐺 2

min
𝐽⊂𝐻

𝔼[#𝐽 𝐺]

𝐻 is strictly balanced if all its strict subgraphs have edge density <
𝐸 𝐻

𝑉 𝐻
.

if 𝔼 #𝐻 𝐺 ≈ 𝑛 𝑉 𝐻 𝑝 𝐸 𝐻 = Θ(1),

then 𝔼 #𝐽 𝐺 = 𝜔 1 for any 𝐽 ⊂ 𝐻.

= 𝑜 1 ⋅ 𝔼 #𝐻 𝐺

concentration AND independence

If 𝐻1, … , 𝐻𝑇 are non-isomorphic strictly balanced graphs with 𝔼 #𝐻𝑖
𝐺 = Θ 1 ,

𝕍 #𝐻𝑖
𝐺 = 𝑜 1 ⋅ 𝔼 #𝐻𝑖

𝐺

𝔼 #𝐻𝑖
𝐺 ⋅ #𝐻𝑗

(𝐺) = (1 + 𝑜 1) ⋅ 𝔼 #𝐻𝑖
𝐺 ⋅ 𝔼 #𝐻𝑗

𝐺

∀𝑖 ∈ [𝑇],

∀𝑖 ≠ 𝑗 ∈ 𝑇 ,

their counts concentrate

their counts are asymptotically independent

distinguishing algorithm

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

𝐻1, … , 𝐻𝑇
set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐺(𝑛, 𝑝)
𝐺

𝐺0 𝐺1

𝐺0

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1
vs.

distinguishing algorithm

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

𝐻1, … , 𝐻𝑇

𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 =
1

𝑇

𝑖=1

𝑇

𝑐𝑜𝑟𝐻𝑖
(𝐺0, 𝐺1)compute

𝔼 𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 =
𝑛2𝑣(𝛾𝑝)2𝑒+𝑛𝑣 𝛾2𝑝 𝑒

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝑛2𝑣(𝛾𝑝)2𝑒 𝕍 𝑐𝑜𝑟𝑇 𝐺0, 𝐺1 =
1

𝑇
𝑛𝑣 𝛾𝑝 𝑒 < 𝑛𝑣 𝛾2𝑝 𝑒

structured

null null

≥ 𝜃

< 𝜃 null

structured

TODO: variance in structured case.

𝐺(𝑛, 𝑝)
𝐺

𝐺0 𝐺1

𝐺0

𝐺(𝑛, 𝑝𝛾)

𝐺0 𝐺1
vs.

outline

 distinguishing/hypothesis testing

 recovery

 concluding

outline

 distinguishing/hypothesis testing

 test graphs

 recovery

 concluding

designing a “test set”

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝑛𝑜(1) 𝑛1/153 𝑛2/3 𝑛1−𝜖
𝑛log 𝑛average degree:

𝑛1/3

𝑛1/2

𝑛3/5

remember?

𝐺(𝑛, 𝑝)

𝐻1, … , 𝐻𝑇

designing a “test set”

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

designing a “test set”

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

claim: connected 𝑑-regular graphs are strictly balanced.

proof: in any strict subgraph, average degree < 𝑑.

designing a “test set”

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

claim: connected 𝑑-regular graphs are strictly balanced.

proof: in any strict subgraph, average degree < 𝑑.

𝑛2/3
𝑛log 𝑛average degree:

𝑛1/3

𝑛1/2

𝑛3/5
𝐺(𝑛, 𝑝)

“test set” for non-integer degrees

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

what if we want 2 ⋅
𝑒

𝑣
= 𝜆 ⋅ 𝑑 + 1 + 1 − 𝜆 ⋅ 𝑑?

𝑑-regular random
graph on 𝑣 vertices

+ random matching
on 𝜆𝑣 vertices

strict balance? expansion.

𝑛2/3 𝑛1−𝜖
𝑛log 𝑛average degree:

𝑛1/3

𝑛1/2

𝑛3/5
𝐺(𝑛, 𝑝)

“test set” for non-integer degrees

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

what if we want 2 ⋅
𝑒

𝑣
= 𝜆 ⋅ 𝑑 + 1 + 1 − 𝜆 ⋅ 𝑑?

𝑑-regular random
graph on 𝑣 vertices

+ random matching
on 𝜆𝑣 vertices

strict balance? expansion.

𝑑 < 3?
2-regular graphs don’t expand.

“test set” for non-integer degrees < 3

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

what if we want 2 ⋅
𝑒

𝑣
= 𝜆 ⋅ 3 + 1 − 𝜆 ⋅ 2?

3-regular random
graph on 𝜆𝑣 vertices

subdivide edges
into 𝑘 and 𝑘 + 1 -

length paths
𝑢 𝑣 𝑢

𝑣
strict balance? expansion.

𝑛𝑜(1) 𝑛1/153 𝑛2/3 𝑛1−𝜖
𝑛log 𝑛average degree:

𝑛1/3

𝑛1/2

𝑛3/5
𝐺(𝑛, 𝑝)

designing a “test set”

For 𝑣 =
1

poly 𝛾
, design a “test set”

of 𝑇 = 𝑣Ω(𝑒) strictly balanced graphs w/ 𝑣 vertices & 𝑒 edges.

set 𝑛𝑣 𝑝𝛾 𝑒 ≈ 1

𝐻1, … , 𝐻𝑇

Conjecture: our construction achieves all
𝑒

𝑣

𝑛1−𝜖
𝑛

log 𝑛
average degree:

𝑛1/3
𝐺(𝑛, 𝑝)

𝑑-reg +matchingsubdivide

+ more conditions (for recovery)

outline

 distinguishing/hypothesis testing

 test graphs

 recovery

 concluding

outline

 distinguishing/hypothesis testing

 test graphs

 recovery

 concluding

distinguishing ≠ recovery

distinguishing: subgraphs on
1

poly 𝛾
= 𝑂(1) vertices, each appearing 𝑂(1) times

only 𝑂(1) vertices participate in subgraphs from our test set.

distinguishing: counting subgraphs

ambiguity in matching; how to conclude 𝜋 𝑢 = 𝑣?

the “black swan” approach

choose test set 𝐻1, … , 𝐻𝑇 so that 𝛾2𝑝 𝑒𝑛𝑣 ≫ 𝛾𝑝 2𝑒𝑛2𝑣,

if we see 𝐻𝑖 in both graphs, it is most likely because of correlation.

choose large test set 𝐻1, … , 𝐻𝑇 with 𝑣 = 𝑂(log 𝑛) vertices

Ω(𝑛) vertices participate in subgraphs from our test set.

identify rare subgraphs appearing in both graphs, and match vertices.

𝐺1
𝐺0

expected
number of

that survive
subsampling

expected number of
unrelated pairs of

the “black swan” approach

identify rare subgraphs appearing in both graphs, and match vertices.

𝐺1
𝐺0

Claim: there is at most one copy of each in 𝐺
with high probability

𝐺(𝑛, 𝑝)
𝐺

𝐺0 𝐺1

𝐺0

Claim: Ω(𝑛) vertices in 𝐺0 ∩ 𝐺1, appear in a surviving subsampled
with high probability

proofs: second moment method

outline

 distinguishing/hypothesis testing

 test graphs

 recovery

 concluding

outline

 distinguishing/hypothesis testing

 test graphs

 recovery

 concluding

why subgraph counts/statistics?

emerging intuition/conjectures: SoS ≡𝒂𝒗𝒈 low-degree polynomials

the sum-of-squares (SoS) semidefinite program is at most as powerful as “low-degree” statistics
for average-case problems.

known to hold for: planted clique [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin’16]

CSP refutation [Grigoriev’01, Schoenebeck’08, Kothari-Mori-O’Donnell-Witmer’17]

tensor PCA [Hopkins-Kothari-Potechin-Raghavendra-S-Steurer’17]

also known: SoS is at most as powerful as “low-degree” spectral algorithms for average-case
problems [Hopkins-Kothari-Potechin-Raghavendra-S-Steurer’17]

does SoS know about the black swans?

ma𝑥
𝜋

𝐴𝐺0 , 𝜋 𝐴𝐺1

does the natural SoS relaxation recover 𝜋?

or ?
cares
about

can ask similar questions about other low-degree functions,
e.g. non-backtracking random walk matrix.

SoS relaxation

more questions

 recovery in polynomial time?
SoS? or, many variations on our theme are possible.

 all information-theoretically possible 𝑝 ∈
log 𝑛

𝑛
, 𝑂 1 ?

 practical heuristics?

𝑛log 𝑛

𝑛1/3

Thank you!

