
TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

TGINF April 23, 2018

Learning Algorithms from Natural Proofs

Notes: Chi-Ning Chou

This time we are going to see a recent breakthrough by Carmosino, Impagliazzo, Kabanets,

and Kolokolova [CIKK16] in which they gave a quasi-polynomial time learning algorithm with

membership queries for AC0[p] circuits for any prime p. Their approach is highly related to the

natural proofs [RR97] and hardness vs. randomness [NW94, IW01] framework. In this notes, we

will start with some background in computational learning theory to let people get a sense what is

the landscape we have right now. Next, we are going to see the high-level proof of [CIKK16]. In

the end, several key proofs will be provided and we will discuss the limitations and open problems.

1 Computational learning theory

In this notes, we focus on PAC learning1 for the uniform distribution. Let ε, δ ∈ (0, 1) and C
be a class of boolean functions, e.g., AC0, k-DNF, monotone functions etc., an algorithm A is a

(ε, δ)-learning algorithm for C if the following holds. For any f ∈ C,

• (with uniform samples) given samples of the form (x, f(x)) where x is uniformly sampled

from {0, 1}n,

• (with membership queries (MQ)) given access to an oracle for f ,

A outputs a circuit g such that with probability at least 1− δ,

Pr
x∈{0,1}n

[f(x) 6= g(x)] ≤ ε.

The running time of the learning algorithm is measured by T = T (n, 1/ε, 1/δ).

1.1 Overview of common approaches

There are two main approaches for classic learning algorithms: reducing to PTFs and Fourier

analysis.

Reducing to PTFs It has been well-known that there is polynomial-time learning algorithm for

constant degree PTFs. More generally, we have the following theorem.

Theorem 1 Let d ∈ N and ε, δ ∈ (0, 1). Let C be the class of boolean functions such that

every f ∈ C has a degree-d PTF. There exists a (ε, δ)-learning algorithm for C runs in time

poly(nd, 1/ε, log(1/δ)).

1Probably approximately correct learning introduced by Valiant [Val84].

Page 1 of 7

TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

Many common classes of boolean function have been know to have tight connection to PTFs. For

instance, k-DNF, k-CNF, k-decision tree, and k-decision list all have degree O(k) PTFs. A seminal

work by Klivans and Servedio [KS04] showed that s-term DNF has degree O(n1/3 log s) PTF and

thus having sub-exponential time learning algorithm.

Fourier analysis If the Fourier spectrum of every function in a class is concentrated in small

number of coefficients, then there exists efficient learning algorithm for this class. Specifically,

when the Fourier spectrum is concentrated in low-degree coefficients, then the low-degree algorithm

(LDA) can efficiently learn the function with uniform samples. The quasi-polynomial time learning

algorithm for AC0 by [LMN93] is a class example.

When we do not know if the Fourier spectrum is concentrated in low-degree coefficients, the

Goldreich-Levin algorithm [GL89] still works, however, the resulting learning algorithm requires

membership queries. Class examples are polynomial-time learning algorithm for decision tree

of polynomial size by Kushileevitz and Mansour [KM93] and DNF of polynomial size by Jack-

son [Jac97].

1.2 Landscape of learning boolean functions

In Table 1, we summarize the current state-of-the-art learning algorithms for common classes of

boolean functions to the best of our knowledge. For simplicity, we omit the definitions of these

classes. Please refer to this lecture notes by Rocco Servedio for a comprehensive introduction.

Class Running time Reference Approach MQ?

PTFs2 of degree d nO(d) [BEHW89] Linear programming N

k-CNF, k-DNF, k-DT, k-DL poly(nk) [Val84] Reducing to PTFs N

DT of size s poly(nlog s) [Blu92] Reducing to PTFs N

DT of size s poly(n, s) [KM93] Fourier ([GL89]) Y

Monotone functions poly(n, s) [OS05] Fourier (LDA) N

s-term DNF poly(n, s) [Jac97] Fourier ([GL89]) Y

s-term DNF 2O(n1/3poly log(n,s)) [KS04] Reducing to PTFs N

AC0 npoly logn [LMN93] Fourier (LDA) N

AC0[p] npoly logn [CIKK16] Natural proofs Y

Table 1: Current state-of-the-art learning algorithms for common classes of boolean functions.

2 Learning algorithms from natural proofs

As we have seen in the previous section, most of the learning algorithms before [CIKK16] is either

reducing to PTFs or based on Fourier analysis. [CIKK16] proposes a general and naive framework

of learning algorithm based on the famous natural proofs and hardness vs. randomness framework.

In this section, we are going to sketch the high-level idea without assuming any background in

natural proofs and hardness vs. randomness framework.

Page 2 of 7

http://www.cs.columbia.edu/~rocco/Teaching/S12/Scribe/scribe.html

TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

2.1 Natural proofs

Rudich and Razborov [RR97] introduced the notion of natural proofs to capture the lower bound

techniques people had been used. The important message from the so called natural proofs barrier

is that proving lower bound for complicated circuit family, e.g., P/poly,TC0, etc., is difficult

under certain mild cryptographic assumption. For more details on natural proofs, please refer to

another notes. Here, we will only define what is natural proof and see how one can use it to design

learning algorithms.

Let Fn,m := {f : {0, 1}n → {0, 1}m} to be the set of all boolean function of input length n and

output length m. For simplicity, we let Fn = Fn,1. We denote a family of function by using bold

face character such as f = {fn}n∈N where fn ∈ Fn for each n ∈ N. A property P = {Pn}n∈N is

a family of collection of functions where Pn ⊆ Fn for each n ∈ N. Semantically, P contains the

functions that satisfy the property.

It’s not difficult to see that to prove that a typical circuit class C does not contain a function

family f is equivalent to find a property P such that

• f ∈ P, and

• for any g ∈ C, g /∈ P.

Now, we define the notion of natural proofs without providing motivations. Please refer to the

other notes for intuition if interested.

Definition 2 Let Γ and Λ be two complexity classes and δ(n) be some function in n, we call a

property P = {Pn}n∈N is Γ-natural and C-useful with density δ(n) if the following conditions hold.

• (constructive) there exists a test T computable in Γ such that for any f = {fn}n∈N, T (fn) =

1 for all n ∈ N iff f ∈ P. Note that the parameter used in Γ is the size of the truth table of

fn, i.e., 2n.

• (largeness) Pfn←Fn [fn ∈ Pn] ≥ δ(n). Equivalently, |Pn| ≥ δ(n) · |Fn|.

• (usefulness) for any f ∈ C ∩ Fn, f /∈ Pn.

We say a proof is a natural proof if the property P involved in the proof can be efficiently

constructed and is non-negligibly large.

Definition 3 (natural proof) We say P is a Γ-natural proof for f /∈ C for some function family

f if f ∈ P and P is a Γ-natural against C with density 1/poly(n).

Lemma 4 There exist P-natural proofs against AC0 and AC0[p] for any prime p.

Before we state the main theorem of [RR97], we need one last definition.

Definition 5 (pseudorandom generator (PRG)) A function Gn : {0, 1}n → {0, 1}`(n) is a

PRG with hardness s(n), stretch `(n), and error ε(n) if G is computable in time poly(`(n)) and for

any circuit C of size at most s(n),

|P[C(Gn(Un)) = 1]− P[C(U`(n)) = 1]| ≥ ε(n),

where Un is the uniform distribution on {0, 1}n.

Page 3 of 7

TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

Theorem 6 ([RR97]) Suppose there exists a P/poly-natural proof against P/poly, then there’s

no PRG against circuit of size 2n
ε

for any ε > 0.

As a remark, there are different forms of Theorem 6 in which other circuit families are considered.

The high-level idea of the proof of Theorem 6 is one-line: natural proof can serve as the distinguisher

for the PRG.

2.2 Hardness vs. randomness

Nisan and Wigderson [NW94] introduced the ground-breaking idea of hardness vs. randomness

framework which has great applications such as derandomization [IW01, IKW02, KI04], SAT al-

gorithm [Wil13], and learning [FK09, KKO13]. The idea is to reduce a hard function to a pseudo-

random generator (PRG) and the high-level idea is the following. First, let f be a hard function (on

average) in the sense that for every g ∈ C, for any n large enough, Pr[f(Un) 6= g(Un)] ≥ 1/2− 1/n

where Un is the uniform distribution over {0, 1}n. Here, think of C as a class of easy functions

such as AC0. Second3, consider an efficient transformation NW : Fn → Fn,m where m > n

such that (i) NW (f)(x) can be computed in poly(m, size(f)) for any x ∈ {0, 1}m and (ii) for any

g ∈ C, |Pr[g (NW (f)(Un)) = 1]− Pr[g(Um)]| ≤ 1/n. The transformation NW is also known as the

Nisan-Wigderson generator.

For now, let us temporarily forget about how to construct such transformation NW and focus

on how to prove such statement. That is, how to prove a transformation can make a hard function

into a PRG? The proof is by contradiction. Namely, suppose NW (f) is not a PRG and thus there

exists a distinguisher g ∈ C such that |Pr[g (NW (f)(Un)) = 1]− Pr[g(Um)]| > ε for some constant

ε > 0. The goal is to show that there exists h ∈ C such that f ≡ h with the help of g. Note that

here we implicitly hide the transformation of the parameters for the ease of reading. For interested

readers, Chapter 7 of this book [V+12] is a very good resource. See Figure 1.

Figure 1: Proof strategy in [NW94] for hardness vs. randomness connection.

To make the proof work, one can see that the construction of the transformation NW should be

(i) complicated enough so thatNW (f) preserves the hardness of f and (ii) simple enough so that one

can use a distinguisher for NW (f) to build a circuit for f . The Nisan-Wigderson designs achieves

this goal and even more has very flexible parameters. We will postpone the introduction of Nisan-

Wigderson designs to later section and the take home message for now is that the transformation

should be both complicated and simple at the same time.

3Note that this is exactly the definition of pseudorandom generator (PRG).

Page 4 of 7

https://people.seas.harvard.edu/~salil/pseudorandomness/prgs.pdf

TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

2.3 Natural proofs + Nisan-Wigderson generator?

So far we have seen natural proofs, which can be thought of as a distinguisher for PRG, and

Nisan-Wigderson generator, which transforms an average-hard function to a PRG, what can we

do? Especially, what do they relate to learning algorithm for AC0[p]?

A very rough idea is th following. Feed the function f we want to learn into the Nisan-

Wigderson generator. Next, use the natural proof for AC0[p] as a distinguisher and then utilize

the proof of hardness vs. randomness connection to get a circuit that approximates f . This idea is

very appealing though many parts are questionable.

• The input of Nisan-Wigderson generator should be an average-hard function, but here f ∈
AC0[p].

• During the reconstruction from the distinguisher to the circuit, what kind of information

about f is required?

• Is the output circuit sill in AC0[p]?

To answer these questions, we need to dig into the literature a little bit more. As a quick

answer, the first question can be resolved by the so called hardness amplification [Yao82] using

XOR and direct product. Though for p 6= 2, we cannot use the XOR construction and a similar

construction, which applies for all prime p,was proposed in [CIKK16]. The second question was

first answered by [IW01] in which Impagliazzo and Wigderson showed that uniform algorithm with

black-box queries to f is sufficient. Namely, this is basically a learning algorithm with membership

queries. The last question was answered in affirmative by [CIKK16]. They showed that the Nisan-

Wigderson designs can be implemented in AC0[p] for any prime p and thus the output of the

reconstruction is also in AC0[p]. See Figure 2.

Figure 2: Learning algorithm for AC0[p] in [CIKK16].

As we discussed above, the two main contributions of [CIKK16] are (i) showing that Nisan-

Wigderson designs can be implemented in AC0[p] and (ii) showing that hardness amplification can

be done in AC0[p] where p is a prime different from 2. Due to the limitation of preparation, here

we omit the details and interested reader can find the corresponding part in Theorem 2.12 and

Section 4.2 of [CIKK16] (ECCC version) respectively.

Page 5 of 7

TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

3 Limitations and open problems

One natural question after seeing the learning algorithm for AC0[p] above could be: can similar

approach work for AC0? Interestingly, the answer is no. In chapter 6 of [CIKK16] (ECCC version),

they provided proof of why Nisan-Wigderson designs cannot be implemented in AC0. The high-

level reason is that AC0 circuit has low average sensitivity while the characteristic function of

Nisan-Wigderson designs have high average sensitivity.

Finally, we conclude with some open problems.

• Can one make the learning algorithm deterministic4?

• Can one remove the requirement of membership queries in the learning algorithm?

• Is there a way to get nontrivial SAT algorithms from natural proofs5?

References

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.

Learnability and the vapnik-chervonenkis dimension. Journal of the ACM (JACM),

36(4):929–965, 1989.

[Blu92] Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information

Processing Letters, 42(4):183–185, 1992.

[CIKK16] Marco L Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina

Kolokolova. Learning algorithms from natural proofs. In LIPIcs-Leibniz International

Proceedings in Informatics, volume 50. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-

matik, 2016.

[FK09] Lance Fortnow and Adam R Klivans. Efficient learning algorithms yield circuit lower

bounds. Journal of Computer and System Sciences, 75(1):27–36, 2009.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions.

In Proceedings of the twenty-first annual ACM symposium on Theory of computing,

pages 25–32. ACM, 1989.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy

witness: Exponential time vs. probabilistic polynomial time. Journal of Computer and

System Sciences, 65(4):672–694, 2002.

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under

a uniform assumption. Journal of Computer and System Sciences, 63(4):672–688, 2001.

[Jac97] Jeffrey C Jackson. An efficient membership-query algorithm for learning dnf with re-

spect to the uniform distribution. Journal of Computer and System Sciences, 55(3):414–

440, 1997.

4There involves randomness in the hardness amplification step.
5[Wil13] is a conditional result. Can one come up with an unconditional result?

Page 6 of 7

TGINF Learning Algorithms from Natural Proofs Notes: Chi-Ning Chou

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests

means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KKO13] Adam Klivans, Pravesh Kothari, and Igor C Oliveira. Constructing hard functions using

learning algorithms. In Computational Complexity (CCC), 2013 IEEE Conference on,

pages 86–97. IEEE, 2013.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spec-

trum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

[KS04] Adam R Klivans and Rocco A Servedio. Learning dnf in time 2o (n1/3). Journal of

Computer and System Sciences, 68(2):303–318, 2004.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier

transform, and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and

System Sciences, 49(2):149–167, 1994.

[OS05] Ryan ODonnell and R Servedio. Learning monotone functions from random examples

in polynomial time, 2005.

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and

System Sciences, 55(1):24–35, 1997.

[V+12] Salil P Vadhan et al. Pseudorandomness. Foundations and Trends R© in Theoretical

Computer Science, 7(1–3):1–336, 2012.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–

1142, 1984.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.

SIAM Journal on Computing, 42(3):1218–1244, 2013.

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In Foundations of

Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 80–91. IEEE,

1982.

Page 7 of 7

	Computational learning theory
	Overview of common approaches
	Landscape of learning boolean functions

	Learning algorithms from natural proofs
	Natural proofs
	Hardness vs. randomness
	Natural proofs + Nisan-Wigderson generator?

	Limitations and open problems

