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1 Introduction

Graph complexity is a program for proving circuit lower bound with a long history initiated by

Pudlák, Rödl,and Savickỳ [PRS88]. The general idea is reducing the task of proving circuit lower

bounds to showing the lower bounds for certain graph properties. It is not clear whether this

approach makes the lower bound problem even harder or makes our lives better. On the bright

side, the strongly exponential lower bound for depth-3 AC0 circuits with bottom XOR gates had

been proved using graph complexity by Jukna [Juk06]. On the other hand, several conjectures in

graph complexity that have great consequences in circuit lower bound remain widely open.

In this notes, we focus on graph complexity of bipartite graph and emphasize more on the results

on bounded depth circuit models. For interested readers, please refer to Jukna’s survey [Juk13] for

a more comprehensive study.

The idea of the graph complexity program for proving circuit lower bounds is associating a

bipartite graph to a boolean function as follows. Let m ∈ N and n = 2m. Consider a bipartite

graph G where V (G) = V1∪V1, V1 = V2 = [n], and E(G) ⊆ V1×V1. For each u ∈ V1 (resp. v ∈ V2),

define x(u) ∈ {0, 1}m (resp. y(v)) be its binary representation. Similarly, for each x ∈ {0, 1}m (resp.

y), define u(x) ∈ V1 (resp. v(y)) be the corresponding vertex. Now, we can define the characteristic

function of G as follows. fG(x1, x2, . . . , xm, y1, y2, . . . , ym) with the following property.

fG(x,y) = 1 ⇔ (u(x), v(y)) ∈ E(G).

Note that the number of variables m of fG is exponentially smaller than the number of vertices n

in G. The gem of graph complexity can be described by the following informal inequality.

Circuit-Complexity(fG) ≥ Graph-Complexity(G),

where Circuit-Complexity(fG) and Graph-Complexity(G) will be defined later. The tricky point

here is that there is a scaling implicitly lies in the above inequality. While the circuit complexity

is measured in m and the graph complexity is measured in n, as long as one can get a nΩ(1) lower

bound for G, then a strongly exponential lower bound nΩ(1) = 2Ω(m) is obtained for fG.

To make things concrete, let us start with the definition of graph complexity. For simplicity, in

this notes we focus on the star complexity of graphs.

1.1 Star complexity

The graph complexity for a bipartite graph G is defined as the difficulty of representing G using

elementary operations. Here, we say representing a graph G in the sense that there is a way to text
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whether a pair of vertices forms an edge in G. Formally, a function f : V1 × V2 → {0, 1} represents

G if f(u, v) = 1⇔ (u, v) ∈ E(G). The graph complexity of G is then defined as the complexity of

function that represents G.

In the following, we focus on a specific way of representing a bipartite graph with stars. A star

is a graph that consists of a vertex having edges to everyone else and there is no edge between

the other vertices. For a bipartite graph on vertex sets V1, V2, a star is then a vertex u ∈ V1 (or

v ∈ V2) having edges to every vertices in V2 (or V1). Denote the star centered at vertex u as Su.

See Figure 1.

Figure 1: An example of star Su.

There are 2n possible stars in a bipartite graph of n vertices on each side. For u ∈ V1, we

associate a variable zu : V1 × V2 → {0, 1} to the star centered at u such that

zu(u′, v′) = 1 ⇔ (u′, v′) ∈ E(Su) 6= ∅. (1.1)

Similarly, we can define zv for v ∈ V2.

The key idea here is using a function of stars to check whether an edge belongs to E(G). For

example, an OR of two stars zu ∨ zv represents the graph Su ∪ Sv where the union is taken over

the edge set. Similarly, zu ∧ zv represents Su ∩ Sv. Given a graph G, the goal is then finding a

function f over the stars such that f(v(u′,v′)) = 1 if and only if (u′, v′) ∈ E(G). We call such f a

star-representation of G. Formally, the definition is as follows.

Definition 1.2 (Star-representation). Let G be a bipartite graph with vertex sets V1 and V2. We

say a function f : {0, 1}|V1|+|V2| → {0, 1} star-represents G if for any u′ ∈ V1, v
′ ∈ V2,

f
(
{zu(u′, v′)}u∈V1 , {zv(u′, v′)}v∈V2

)
= 1 ⇔ (u′, v′) ∈ E(G).

♦

For example, the following function star-represents bipartite graph G.

f =

 ∨
u∈V1

zu

∧ ∨
v∈V2,(u,v)∈E(G)

zv

 . (1.3)

The star complexity of a graph G is then naturally defined as the complexity of the function

that star-represents G. Note that the star complexity can be defined with respect to any common

circuit classes. Specifically, we are usually interested in monotone circuit classes. That is, circuits

with no negation gate.
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For instance, we can star-represents every bipartite graph using monotone CNF formula as

in Equation 1.3. Thus, it is natural to define the monotone CNF star-complexity of G as follows.

Definition 1.4 (Monotone CNF star-complexity). Let G be a bipartite graph. The monotone CNF

star-complexity of G, denoted as mcnf(G), is defined the minimum number of clauses of a monotone

CNF that star-represents G. ♦

As we did in Equation 1.3, every graph has monotone CNF star-complexity at most O(n +

E(G)) = O(n2). With some efforts, one can show that for every bipartite graph G, mcnf(G) =

O( n2

logn) and there exists a bipartite graph G such that mcnf(G) = Ω( n2

logn). See the survey of Jukna

[citation] for proofs.

1.2 Magnification lemma

There is a connection between the circuit complexity of fG with the star-complexity ofG through the

magnification lemma. Specifically, the goal of this subsection is proving the following magnification

lemma for CNFs.

Lemma 1.5 (Magnification for CNFs). Let G be a bipartite graph. We have CNF-SIZE(fG) ≥
mcnf(G).

Proof of Lemma 1.5. Suppose fG is computed by a CNF of s clauses. The idea is replacing the

each input gate with an OR of star-variables {zu}u∈V1 and {zv}v∈V2 .

First, without loss of generality, we can assume the input gates are xi,b for each i ∈ [m] and

b ∈ {0, 1} where xi,0 = 1 (resp. xi,1 = 1) when xi = 0 (resp. xi = 1). As a result, the CNF

computing is monotone in these new variables.

Second, observe that the function fi,b = xi,b corresponds to a biclique Gi,b where E(Gi,b) =

{(u, v) : x(u)i = b, v ∈ V2}. This can be written as an OR of 2m−1 many star variables as follows.

xi,b =
∨

u∈V1, x(u)i=b

zu.

Similar gadget works for yj,b for any j ∈ [m] and b ∈ {0, 1}.
Finally, we can simply replace the variables xi,b and yj,b in C with ORs of {zu}u∈V1 and {zv}v∈V2 .

Note that this would not increase the number of clauses in the CNF since the bottom gates are

also OR and can be merged with the gadget. Now, we have a CNF of size s star-representing G.

That is, s ≥ mcnf(G). See Figure 2.

Figure 2: An example of magnification from CNF circuit for fG to monotone CNF that star-

represents G. Note that the magnification does not increase the number of clauses in the CNF.

Page 3 of 8



TGINF Graph Complexity Notes: Chi-Ning Chou

Note that the connection in Lemma 1.5 says that mcnf(G) ≥ nε would imply CNF-SIZE(fG) ≥
nε = 2εm, which is a strong exponential lower bound. Nevertheless, strong exponential lower bound

for CNF are already know (for PARITY). In the next subsection, we are going to see how to

utilize Lemma 1.5 to get a strong exponential lower bound for depth-3 AC0.

2 Some known results

Let us start this section with a table of known connection between star complexity and circuit

complexity. All the details can be found in [Juk13].

Star Complexity Circuit Class Ideal Lower Bound Consequence Status

Monotone circuit Circuit (2 + Ω(1))n P 6= NP ?

Monotone formula Formula n log3+Ω(1) n n3+Ω(1) formula lb ?

Monotone CNF CNF Ω(n) Strongly exponential CNF lb Folklore

Monotone ⊕ ◦ ∨ ⊕ ◦ ∨ Ω(n) Strongly exponential ⊕∨ lb Folklore

Monotone SYM ◦ ∨ SYM ◦ ∨ 2log logω(1) n Super-polynomial ACC0 lb ?

Monotone ∨ ◦ ∧ ◦ ∨ ∨ ◦ ∧ ◦ ∨ nΩ(1) Strongly exponential ∨ ◦ ∧ ◦ ∨ lb ?

Monotone ∧ ◦ ∨ ◦ ⊕ ∧ ◦ ∨ ◦ ⊕ nΩ(1) Strongly exponential ∧ ◦ ∨ ◦ ⊕ lb [Juk06]

Table 1: Connection between star complexity and circuit complexity.

2.1 Depth-3 AC0 with bottom XOR gates

In this subsection, we consider the depth-3 AC0 with bottom XOR gates. Concretely, we study

function in the following form that star-represents a bipartite graph G.∨
i

∧
j

⊕
u

zi,j,u. (2.1)

We denote the smallest size of the above function star-representing G as Star∗3(G). Two immediate

facts after the definitions. First, Pudlák and Rödl [PR94] showed that for any bipartite graph

G, Star∗3(G) = O( n
logn). Second, by the magnification lemma, we have ⊕3(fG) ≥ Star∗3(G) where

⊕3(fG) is the smallest size of unbounded fan-in ∨ ◦ ∧ ◦ ⊕ circuit for fG. This circuit class is

also known as DNF of parity. Thus, the goal is explicitly finding a bipartite graph G such that

Star∗3(G) = nΩ(1). It turns out that there exists such explicit graph found by Jukna [citation].

Theorem 2.2 (informal). There exists an explicit bipartite graph G such that Star∗3(G) = nΩ(1).

An immediate corollary of the above theorem is the first strongly exponential lower bound for

DNF of parity. To prove Theorem 2.2, we need to first give a combinatorial characterization for

Star∗3(G).

Definition 2.3 (Fat matching). A fat matching in a bipartite graph is a family of vertex-disjoint

bi-clique. Let fat(G) be the smallest number of fat matching that covers1 G. ♦
1We say H1, . . . , Ht covers G if Hi is a subgraph of G for all i ∈ [t] and every edge in G is contained in at least

one Hi.
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Lemma 2.4 (Combinatorial characterization for Star∗3). Star∗3(G) = fat(G).

Proof of Lemma 2.4. Let us start with the bottom gate of Equation 2.1. Observe that an XOR

of stars in a bipartite graph is union of two vertex-disjoint biclique, a fat matching. Concretely,

⊕iSui ⊕j Svj star-represents {(u, v) : ∃i, u = ui, ∀j, v 6= vj} ∪ {(u, v) : ∀i, u 6= ui, ∃j, v = vj}.
As for the middle layer, as AND of fat matching is still fat matching, we know that the bottom

two gates star-represents a fat-matching of G. Finally, the top OR gate is simply an union and

thus Equation 2.1 gives a fat matching covering for G.

Lemma 2.5. For any a, b ≥ 1 and Ka,b-free bipartite graph G, fat(G) ≥ |E(G)|
(a+b)n .

Proof of Lemma 2.5. The high-level intuition is that Ka,b-free graph does not have a large fat

matching. Concretely, let H = ∪ti=1Ai ×Bi be a fat matching in G, we have

|E(H)| =
∑
i∈[t]

|Ai| · |Bi| ≤
∑

i:|Ai|<a

a · |Bi|+
∑

i:|Ai|≥a

|Ai| · b ≤ (a+ b)n,

where the last inequality is due to the vertex-disjoint property of a fat matching. As each fat

matching in G has size at most (a + b)n, a fat matching covering for G must be of size at least
|E(G)|
(a+b)n .

Theorem 2.2 is then a corollary of the following lemma. We leave the proof to Appendix A.

Lemma 2.6 (Explicit construction of K2,2-free graphs with large average degree). For any prime

power q and n = q2 + q + 1, there exists a bipartite graph G of n and n vertices such that G is

K2,2-free and (q+1)-regular. Furthermore, there exists an algorithm that given two distinct vertices

u, v of G in bit representation2, outputs whether (u, v) ∈ E(G) in poly(log n) time.

3 An approach for ∨ ◦ ∧ ◦ ∨

As we saw in Table 1, there are still many open questions in graph complexity. Some immediately

seems inapproachable as it implies super strong consequences while some looks innocent. In par-

ticular, for the ∨ ◦ ∧ ◦ ∨ connections in Table 1, there are explicit conjectures pointing out a path

towards proving them. Let us first state the conjecture without context.

Conjecture 3.1. There exists ε > 0 such that for any n large enough and G be the explicit K2,2-free√
n-regular graph from Lemma 2.6. Let G = H1 ∪ · · · ∪Hnε be a decomposition of G, there exists

i ∈ [nε] such that the star CNF complexity of Hi is n2ε.

Let us formally define the circuit complexity for depth-2 and depth-3 unbounded fan-in circuits.

Definition 3.2. Let f : {0, 1}m → {0, 1} be a boolean function. Define

• CNF-SIZE(f) as the size of the smallest unbounded fan-in circuit with top gate being AND

and bottom gates being OR that computes f ,

2Since there are 2n vertices, they can be represented in dlog 2ne bits.
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• Σ3-SIZE(f) as the size of the smallest unbounded fan-in circuit with top gate being OR, middle

gates being AND, and bottom gates being OR that computes f , and

♦

Theorem 3.3 (Conjecture 3.1 ⇒ Strong exponential lower bound for depth-3 AC0). If Conjec-

ture 3.1 is true. Then, there exists a constant ε > 0 such that for any m ∈ N large enough, there

is an explicit bipartite graph G where Σ3-SIZE(fG) = 2εm.

3.1 Monotone CNF star complexity and covering number

A key step towards proving depth-3 lower bound is a connection between mcnf(G) and the covering

number of the complement of AG explained as follows.

Let C be a monotone CNF that star-represents G. C would be in the following form.

C =
∧
`∈[t]

∨
u∈T`

zu, (3.4)

where T` ⊆ V1 ∪ V2 is a subset of vertices. Let us take a closer look at a single clause ∨u∈T`zu.

Recall from Equation 1.1 that zu(u′, v′) = 1 if and only if (u′, v′) ∈ E(Su), where Su is the star

centered at vertex u. Thus, this clause will be evaluated to 1 if and only if (u′, v′) ∈ ∪u∈T`E(Nu).

Since C star-represents G, (u′, v′) ∈ E(G) if and only if every clause evaluated to 1 on (u′, v′).

In other words, (u′, v′) /∈ E(G) if and only if (u′, v′) /∈ ∪u∈T`E(Su) for some ` ∈ [t]. That is, we

have the following two observations.

Lemma 3.5. Let G be a bipartite graph and C = ∧`∈[t] ∨u∈T` zu a monotone CNF that star-

represents G. Then

• each T` should be an independent set in G and

• these independent sets T1, T2, . . . , Tt cover all the non-edge of G.

Proof of Lemma 3.5. For the first item, let us assume there is an ` ∈ [t] such that T` is not an

independent set in G. That is, there is an edge (u′, v′) ∈ E(G) where u′, v′ ∈ T`. However, this

means that u′, v′ /∈ T` and thus the clause ∨u∈T`zu will evaluate to 0 on (u′, v′), which contradicts

to the fact that C star-represents G.

For the second item, let us also prove by contradiction and assume there is a non-edge (u′, v′) /∈
E(G) that is not covered by T1, T2, . . . , Tt. This means that every clause will evaluate to 1 on

(u′, v′) and thus contradicts to the fact that C star-represents G.

With Lemma 3.5, we are now ready to prove the following main lemma of this subsection

connecting the monotone CNF star complexity of G with the covering number of AG.

Lemma 3.6. Let G be a bipartite graph. We have

mcnf(G) = cov(AG),

where AG is the adjacency matrix of G and AG is the flipped of AG. Recall that cov(M) is the

smallest number of all one matrices that covers M .
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Proof of Lemma 3.6.

• (mcnf(G) ≥ cov(AG)) Let C be a monotone CNF of size t that star-representsG. From Lemma 3.5,

there are t independent sets T1, T2, . . . , Tt that covers all the non-edge of G. For an indepen-

dent set T`, it corresponds to an all one matrix in AG. As a non-edge in G corresponds to an

1 in AG, this gives us an size t covering for AG.

• (mcnf(G) ≤ cov(AG)) Let M1,M2, . . . ,Mt be a covering for AG. As M` is all one, it corre-

sponds to an independent set T` in G. Also, as M1,M2, . . . ,Mt form a covering for AG, all

the non-edges of G are covered. Thus, we can use T1, T2, . . . , Tt to construct a monotone CNF

that star-represents G as we did in Equation 3.4 and Lemma 3.5.

3.2 Depth-3 AC0

In this subsection, we are going to use Lemma 1.5 to get a strong exponential lower bound for

depth-3 AC0 from Conjecture 3.1. The candidate graphs are K2,2-free graphs with nΩ(1) average

degree.

Recall that K2,2 is the complete bipartite graph of two vertices on each side. We say a bipartite

graph G is K2,2-free if G does not contain K2,2 as its subgraph. In Lemma 2.6, we saw that there

exists explicit construction of bipartite n-vertex D-regular K2,2-free graph for D = Θ(
√
n).

A key property of K2,2-free graph is that its subgraph is also K2,2-free.

Lemma 3.7. Let G be a K2,2-free graph, then every subgraph of G is also K2,2-free.

Now, we are ready to prove a strong exponential lower bound for depth-3 AC0 modulo Conjec-

ture 3.1.

Proof of Theorem 3.3. For any m ∈ N large enough and n = 2m. Let G be the K2,2-free bipartite

graph of average degree D = Θ(
√
n) from Lemma 2.6. Suppose there is a size s depth-3 Σ3 circuit

C computes fG. Then C is of the following form.

C(x,y) =
∨
i∈[s]

φi(x,y),

where φi is a CNF with at most s clauses for each i ∈ [s].

A key observation here is that each φi actually star-represents a subgraph of G. This is because

the top get of C is an OR and thus every edge accepted by φi must also be accepted by C. Next,

by averaging argument, we then know that there exists a subgraph H of G with at least nD
2s many

edges such that H is represented by φi for some i ∈ [s]. Finally, by Lemma 3.7, we know that H is

still K2,2-free and its average degree is at least D
s . Thus, we are in the situation where a CNF φi of

at most s clauses that star-represents fH . Now, apply Lemma 1.5, Lemma 3.6, and Conjecture 3.1

on H, we have

CNF-SIZE(fH)
Lemma 1.5
≥ mcnf(H)

Lemma 3.6
= cov(AH)

Conjecture 3.1
≥ n2ε

s
.
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As φi has at most s clauses, CNF-SIZE(fH) ≤ s and thus we have the following inequality.

s ≥ n2ε

s
.

This gives us s ≥ nε. We conclude that Σ3-SIZE(fG) ≥ nΩ(1) = 2εm for some constant ε > 0.
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[PR94] Pavel Pudlák and Vojtech Rödl. Some combinatorial-algebraic problems from complexity

theory. Discrete Mathematics, 1(136):253–279, 1994.
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A Explicit construction of K2,2-free graphs

In this section, we give a proof for Lemma 2.6. Here, we use the point-line incidence graph of

projective plane from the external graph theory. Note that there are different ways to construct

graphs with the same desiring properties.

Let q be a prime power. The projective plane PG(2, q) is defined as the set of all 1-dimensional

subspace in F3
q . Concretely,

PG(2, q) = {〈a, b, c〉 : (a, b, c) ∈ F3
q\{(0, 0, 0)}},

where 〈a, b, c〉 = {(λa, λb, λc) : λ ∈ Fq\{0}} is the linear span of (a, b, c). As PG(2, q) is a partition

for F3
q\{(0, 0, 0)} and each linear subspace contains q − 1 points, we have

|PG(2, q)| = q3 − 1

q − 1
= q2 + q + 1.

Now, define the point-line incidence graph G of PG(2, q) as follows. Let V1 = V2 = PG(2, q) and

for any 〈a, b, c〉 ∈ V1 and 〈a, b, c〉 ∈ V2, there is an edge between them if and only if the two linear

subspaces are orthogonal to each other. That is,

E(G) = {(〈a, b, c〉, 〈a′, b′, c′〉) ∈ V1 × V2 : aa′ + bb′ + cc′ = 0}.

To see the degree of each vertex in G, fix 〈a, b, c〉 ∈ V1. The equation aa′ + bb′ + cc′ = 0 has q2

many solutions (a′, b′, c′). Note that these solutions include the all zeros vector and a neighbor of

〈a, b, c〉 would contain q− 1 many solutions. Thus, 〈a, b, c〉 has q2−1
q−1 = q+ 1 many neighbors. Since

〈a, b, c〉 is arbitrary, we conclude that G is (q + 1)-regular.

Finally, let n = |PG(2, q)| = q2 + q + 1, it is not difficult to see G can be encoded with

dlog 2ne bits and checking whether two vertices are neighbors only requires elementary arithmetic

operations, which can be done in poly(log n) time.
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